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A B S T R A C T

Land surface soil moisture (SSM) has important roles in the energy balance of the land surface and in the water
cycle. Downscaling of coarse-resolution SSM remote sensing products is an efficient way for producing fine-
resolution data. However, the downscaling methods used most widely require full-coverage visible/infrared
satellite data as ancillary information. These methods are restricted to cloud-free days, making them unsuitable
for continuous monitoring. The purpose of this study is to overcome this limitation to obtain temporally con-
tinuous fine-resolution SSM estimations. The local spatial heterogeneities of SSM and multiscale ancillary
variables were considered in the downscaling process both to solve the problem of the strong variability of SSM
and to benefit from the fusion of ancillary information. The generation of continuous downscaled remote sensing
data was achieved via two principal steps. For cloud-free days, a stepwise hybrid geostatistical downscaling
approach, based on geographically weighted area-to-area regression kriging (GWATARK), was employed by
combining multiscale ancillary variables with passive microwave remote sensing data. Then, the GWATARK-
estimated SSM and China Soil Moisture Dataset from Microwave Data Assimilation SSM data were combined to
estimate fine-resolution data for cloudy days. The developed methodology was validated by application to the
25-km resolution daily AMSR-E SSM product to produce continuous SSM estimations at 1-km resolution over the
Tibetan Plateau. In comparison with ground-based observations, the downscaled estimations showed correlation
(R≥ 0.7) for both ascending and descending overpasses. The analysis indicated the high potential of the pro-
posed approach for producing a temporally continuous SSM product at fine spatial resolution.

1. Introduction

Land surface soil moisture (SSM) has vital importance in both the
energy balance of the land surface and the water cycle (Seneviratne
et al., 2010; Ochsner et al., 2013). A fine spatial resolution SSM dataset
is one of the crucial input parameters for catchment-based hydro-
ecological modeling (Li et al., 2015), drought and flood forecasting
(Chakrabarti et al., 2014), weather and climate prediction (Koster et al.,
2011), and crop growth monitoring (Tubiello et al., 2002). Ground-
based measurement methods such as gravimetric measurements
(Robock et al., 2000), electrical resistivity measurements (Samouëlian
et al., 2005), and time domain reflectometry (Noborio, 2001) can yield
accurate in situ soil moisture data at different depths. These techniques
make the acquisition of simultaneous regional-scale measurements of

soil moisture feasible given the advent of wireless sensor networks (Jin
et al., 2014; Ge et al., 2015) and the Cosmic-ray Soil Moisture Obser-
ving System (Zreda et al., 2012). However, the implementation of dense
networks of instruments across large areas to obtain continuous SSM
measurements is generally restricted because of financial and practical
limitations. Furthermore, in situ measurements cannot characterize the
large-scale variability attributable to the high spatial and temporal
heterogeneities of SSM (Kang et al., 2017).

Remote sensing techniques are characterized by the advantages of
large information capacity, huge observation scope, and high speed;
thus, they have become the principal means of earth observation at
regional, continental, and global scales. With the development of re-
mote sensing techniques, satellite microwave observations acquired by
active and passive sensors have increasingly been applied to retrieve
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SSM via the physically based relationship between the soil dielectric
constant and water content. Many satellite-based active and passive
microwave sensors have been launched (Jackson et al., 2010; Jensen
et al., 2011), including the Advanced Microwave Scanning Radiometer
for the Earth Observing System (AMSR-E), Advanced Synthetic Aper-
ture Radar (ASAR), Advanced Scatterometer, Soil Moisture and Ocean
Salinity (SMOS), Advanced Microwave Scanning Radiometer 2 (AMSR-
2), and Soil Moisture Active Passive (SMAP) instruments. Several re-
lated SSM products have also been made available, such as the AMSR-E
Land Parameter Retrieval Model (Owe et al., 2008) and the SSM pro-
ducts from the Advanced Scatterometer (Naeimi et al., 2009), SMOS
(Kerr et al., 2002), and SMAP (Entekhabi et al., 2010). Unfortunately,
all of the above SSM products have coarse spatial resolution of the order
of tens of kilometers. To monitor SSM at fine spatial resolution over
large areas, the spatial resolution of existing SSM products must be
downscaled (Atkinson, 2013; Malbéteau et al., 2017).

Various methods have been developed to downscale microwave-
derived SSM products. These methods can be classified broadly into the
following two categories based on the type of input data: a combination
of active and passive microwave data (Wagner et al., 2008), and a
combination of visible/infrared and microwave data. The change de-
tection method (Njoku et al., 2002; Wagner et al., 2008), SMAP base-
line algorithm (Das et al., 2011), and a Bayesian merging method (Zhan
et al., 2006) have been proposed for merging radar (active) and
radiometer (passive) data. However, because of the fine resolution of
visible/infrared remote sensing data, it has become popular to combine
them with coarse SSM remote sensing data in a downscaling procedure
(Piles et al., 2011). General statistical methods (Wilson et al., 2005),
machine learning methods (Ahmad et al., 2010; Srivastava et al., 2013),
data assimilation (Sahoo et al., 2013a,b; Yang et al., 2016; Chen et al.,
2017), universal triangle/trapezoidal models (Merlin et al., 2013,
2015), and geostatistical methods (Thattai and Islam, 2000; Chen et al.,
2014) have been developed to obtain SSM by employing fine spatial
resolution visible/infrared data. The idea behind these methods is to
establish either statistical correlation or a physically based model be-
tween SSM and ancillary variables. A systematic review of the techni-
ques for downscaling satellite remotely sensed SSM data and their po-
tential for application was presented by Peng et al. (2017). However,
some problems that remain in the downscaling process must be ad-
dressed, such as local heterogeneity, discontinuous downscaled esti-
mations, and the enhancement of model representativeness.

Because SSM commonly has high spatial heterogeneity, global
models might be inadequate in capturing its local variability. Strong
surface heterogeneity would decrease the spatial correlation and in-
crease the error in downscaled estimations. However, nonstationary
models have been developed to deal with high spatial heterogeneity
(Harris et al., 2010). For example, Jin et al. (2017) proposed the use of
geographically weighted area-to-area regression kriging (GWATARK) to
downscale the AMSR-2 SM product, which is a technique that integrates
geographically weighted regression (GWR) and area-to-area kriging
(ATAK).

Although the high accuracy of downscaled results has indicated the
potential of combining visible/infrared data to estimate SSM at fine
spatial resolution, one of the major limitations of the technique is the
requirement for full-coverage visible/infrared data. However, the
visible/infrared remotely sensed products generally cannot provide full
coverage on a daily basis due to the cloud disturbance; thus, it is not
possible to obtain continuous SSM estimations by employing visible/
infrared data in downscaling procedures. Several reconstruction
methods (Roy et al., 2008; Rakwatin et al., 2009; Chen et al., 2016)
have been proposed to derive continuous satellite visible/infrared ob-
servations; however, limited research has been conducted on obtaining
temporally continuous downscaling estimations (e.g., Sahoo et al.,
2013a,b; Djamai et al., 2016). In addition to downscaling, some re-
searchers (Zhao et al., 2013; Leng et al., 2014) focus on the SSM re-
trieval models to obtain continuous SSM estimations from the

combination of optical/infrared data and ancillary data (e.g. meteor-
ological data, hydrologic data). In recent studies (Leng et al., 2016,
2017), a practical algorithm that uses the real temporal information of
diurnal changes of satellite-derived land surface variables (e.g. LST,
solar radiation) has been developed and applied in different biophysical
and atmospheric conditions.

Most of the abovementioned methods assume the model between
SSM and the ancillary variables is scale-invariant and they downscale
SSM directly from the coarse-resolution dataset to the target fine re-
solution. The established downscaling model might not simulate the
relationships at different resolutions effectively, and it might perform
better under the condition of a smaller scale factor than a larger scale
factor (e.g., from 25 to 1 km, the scale factor is 25). In addition to the
ancillary variables at the coarse and target fine resolutions, data are
also available at several intermediate resolutions that could provide
further information to explain the SSM. For example, there are multi-
scale satellite products of both land surface temperature (LST) and
normalized difference vegetation index (NDVI), which are two ancillary
variables used often in SSM downscaling (Chauhan et al., 2003;
Colliander et al., 2017), as well as multiscale soil texture information
that could influence the pattern of SSM distribution (Reichle et al.,
2010; Hengl et al., 2014). The use of multiscale ancillary information in
the downscaling process is considered beneficial, and the stepwise
method is an alternative approach with which to narrow the scale factor
in each implementation of the downscaling and to make the best use of
multiscale ancillary data.

To overcome the three weaknesses outlined above, this paper pre-
sents a methodology for the acquisition of continuous SSM at fine re-
solution, which considers local spatial heterogeneity of SSM, temporal
discontinuity of SSM estimations, and multiscale ancillary information.
This process is implemented via two principal steps. Because of its
potential for addressing the local spatial heterogeneity problem, the
GWATARK method is used on cloud-free days (Jin et al., 2017). Based
on the GWATARK method, stepwise downscaling is implemented by
combining multiscale ancillary variables with SSM. The coarse-resolu-
tion SSM data are downscaled through intermediate scales to the target
fine resolution. On cloudy days, the GWATARK-estimated SSM and SSM
data from another source are combined to estimate SSM at the target
fine resolution. Then, the continuous downscaled estimations can be
obtained. The proposed methodology was applied to improve the spa-
tial resolution of the 25-km-resolution AMSR-E SSM product for both
ascending and descending overpasses by integrating soil texture, LST,
and NDVI information as ancillary variables. Fine-resolution (1 km)
SSM estimations were acquired for the region of the Tibetan Plateau
(TP), which includes two ground-based monitoring networks.

The structure of the rest of this paper is organized as follows.
Section 2 describes both the study area and the data used. The down-
scaling methodology is described in Section 3. The downscaled results
and their validation are presented in Section 4. Finally, several con-
clusions are drawn in Section 5.

2. Study area and data description

2.1. Study area

The study area comprised the TP in eastern Asia (26.5°–40.0°N,
73.4°–104.4°E), which is the highest plateau in the world (Zeng et al.,
2015) (Fig. 1). It has average elevation of over 4000m above sea level
and it encompasses an area of approximately 2.5×106 km2 (Qin et al.,
2013). In order to both investigate the mechanism of soil–vegetatio-
n–atmosphere interactions and validate satellite SSM products, several
soil moisture networks have been established on the TP (Su et al., 2011;
Yang et al., 2013). These include two soil moisture and temperature
measurement system (SMTMS) networks at Maqu and Naqu, which
provide representations of different land surface conditions and cli-
mates. In the north-eastern fringe of the TP, the Maqu area is the largest
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wetland on the plateau and it is subject to high chilly an alpine and
humid climate. Naqu lies within the subfrigid central part of the TP
under the influence of the Asian summer monsoon; it has a subhumid
climate with alpine meadow as the main vegetation type. The topo-
graphy of the study area, locations of the ground-based SMTMS net-
works, and arrangement of the AMSR-E grid pixels are shown in Fig. 1.
In the following analysis, the two AMSR-E grid pixels covering the
highest numbers of ground-based sites and the two ground stations in
the Maqu and Naqu areas are identified as Grid A and Grid B, and as
Station A and Station B, respectively.

2.2. Soil observations

2.2.1. SMTMS networks
The SMTMS network of Maqu, established in July 2008 to monitor

SSM and temperature, has acquired measurements from July 1, 2008 to
July 31, 2010 (Su et al., 2011; Dente et al., 2012). The spatial dis-
tribution of the 20 ground stations that comprise the network is shown
in Fig. 1. The International Soil Moisture Network (http://ismn.geo.
tuwien.ac.at/networks/maqu/) provides dynamical SSM observations
at depths of 5, 10, 20, 40, and 80 cm with temporal resolution of
15min.

The SMTMS network of Naqu, comprising 56 ground stations, was
established in July 2010 and designed for multiscale observation pur-
poses (Fig. 1) (Yang et al., 2013). This multiscale network includes
large- (1.0°), medium- (0.3°), and small-scale (0.1°) networks. The Data
Assimilation and Modeling Center for Tibetan Multi-spheres (http://
dam.itpcas.ac.cn/) has provided dynamical SSM observations at depths
of 0–5, 10, 20, and 40 cm with temporal resolution of 30min since
August 1, 2010.

Because of the cold environment of the TP, soil thawing and
freezing occur around May and November, respectively. For this study,
six months’ in situ SSM observations were collected from May 1 to
October 31, 2010. The soil texture information (sand, clay, and silt
contents) of the two SMTMS networks was also measured. The average
surface observations during the three hours before and after satellite
overpasses were collated to validate the SSM of the AMSR-E, i.e., from
22:30 to 04:30 local solar time for the descending overpasses and from
10:30 to 16:30 local solar time for the ascending overpasses. Two
consecutive three-month periods were adopted for the validation in the
Maqu and Naqu areas because of the availability of ground observa-
tions. The data comprised in situ SSM observations at 5-cm depth from
the Maqu area (from May 1 to July 31, 2010) and at depths of 0–5 cm
from the Naqu area (from August 1 to October 31, 2010). Fig. 2 shows
the daily mean and standard deviation values of SSM during the entire
six-month period, together with the daily coverage fraction of the re-
mote sensed products.

2.2.2. AMSR-E data
The AMSR-E instrument was launched on May 4, 2002, to acquire

global observations of SSM (Njoku et al., 2003), and to ascertain the
feasibility for downscaling SSM products (Ray et al., 2010). Daily
AMSR-E (version 002) level 3 products at 25-km spatial resolution,
derived from descending (01:30 local solar time) and ascending (13:30
local solar time) overpasses, were retrieved using the Land Parameter
Retrieval Model based on the X band (https://earthdata.nasa.gov/).
Full-coverage data were chosen from six months as valid data. These
were then resampled into 25×25 km regular grids (Fig. 1) using the
nearest neighbor resampling technique to provide complete coverage of
the study area.

2.2.3. SSM assimilation datasets
The China Soil Moisture Dataset from Microwave Data Assimilation

(CSMDA) data were employed to estimate fine-scale SSM on cloudy
days through combination with the downscaled results obtained on

Fig. 1. Map of the Tibetan Plateau and the locations of the two SMTMS networks, including the distributions of the corresponding monitoring stations in each. Blue spots indicate in situ
SSM stations. The two 25-km grids and the two ground stations shown in orange, identified as Grid A and Grid B, and as Station A and Station B, were used for analysis. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Daily mean SSM observations and daily coverage fractions of remotely sensed
products (i.e., MODIS and AMSR-E). Blue and purple dots represent mean values and the
bars indicate±1 standard deviation. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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cloud-free days. The SSM assimilation datasets were estimated using a
Dual-Pass Microwave Land Data Assimilation System at the Data
Assimilation and Modeling Center (Yang et al., 2007) and subsequently
validated (Yang et al., 2016). These temporally continuous datasets
comprise daily SSM data at 25-km spatial resolution at three layers
(0–5, 5–20, and 20–100 cm) from June 20, 2002 to September 24,
2011, which are free to download (http://en.tpedatabase.cn/portal/
index.jsp). The six-month SSM assimilation data at depths of 0–5 cm
from the studied areas of the TP were resampled to the same grid
configuration as the AMSR-E data.

2.2.4. Gridded soil data
Gridded soil data were selected as ancillary variables in the SSM

downscaling because of their influence on the pattern of distribution of
SSM. The International Soil Moisture Network (http://www.isric.org/)
has released two versions of the Global Soil Information system
(SoilGrids) for the estimation of detailed soil properties (Hengl et al.,
2014, 2017). These two soil profile datasets include information at six
different depths (2.5, 10.0, 22.5, 45.0, 80.0, and 150.0 cm) with spatial
resolutions of 1 km (first version) and 250m (second version). Given
that our concern was soil surface information, soil texture data (clay,
sand, and silt contents) at 2.5-cm depth from the first version of the
dataset were used. The soil texture data covering the study area were
resampled to 1-km resolution using the nearest neighbor resampling
technique, and then aggregated to 5 and 25 km bins using the average
aggregating technique.

2.3. MODIS products

The LST and NDVI were also chosen as ancillary variables for the
SSM downscaling. Given that the equator crossing times of a sun-syn-
chronous satellite are 01:30 and 13:30 local solar time, the MODIS data
available for this study included four MODIS products (version 006) of
the Aqua satellite: 1-km daily LST (MYD11A1), 6-km daily LST
(MYD11B1), 1-km 16-day NDVI (MYD13A2), and 0.05° 16-day NDVI
(MYD13C1). These products are available for download from the NASA
Land Data Products and Services website (https://search.earthdata.
nasa.gov/search). The day and night LSTs were extracted from the
MYD11A1 and MYD11B1 products, corresponding to the ascending and
descending overpasses, respectively. The two 16-day NDVI products are
cloud free. To avoid the influence of cloud, coincident dates with high
fractions of data coverage (> 0.5) were selected from the two LST
products as cloud-free days using the spline interpolation technique for
interpolating uncovered pixels. After matching the AMSR-E and MODIS
data, 52 days of ascending overpasses and 47 days of descending
overpasses were selected as the full-coverage days. Fig. 3 displays these
valid days during the six-month period, illustrating the obvious dis-
continuity. All MODIS data were projected and extracted consistently

with large-scale AMSR-E data. The data of MYD11A1 and MYD13A2
were resampled to 1-km resolution. The data of MYD11B1 and
MYD13C1 were resampled to 5-km resolution and then aggregated to
25-km bins.

2.4. DEM products

The NASA Shuttle Radar Topographic Mission (Jarvis et al., 2008)
provides digital elevation model (DEM) data at 30- and 90-m spatial
resolutions, which are available to download (http://srtm.csi.cgiar.org/
). This study used the version 4 DEM product at 90-m spatial resolution,
which was resampled to 1×1 km regular grids by averaging the values
of all the pixels within each 1-km pixel.

3. Methodology

To address the problems of local heterogeneity, discontinuous
downscaled estimations, and the enhancement of model representa-
tiveness in the downscaling process, this paper describes a strategy for
obtaining continuous downscaled SSM estimations at fine resolution. A
flowchart of the proposed downscaling strategy, for which all data
should be preprocessed, is presented in Fig. 4. The strategy comprises
two principal aspects for the estimation of SSM at 1-km resolution: a)
stepwise downscaling on full-coverage days using GWATARK, and b)
downscaling on cloudy days through modeling the function between
GWATARK-estimated SSM (obtained in step a) and CSMDA data. Fur-
ther details are provided in the following.

3.1. Stepwise downscaling on full-coverage days

The GWATARK method is used repeatedly for stepwise downscaling
on full-coverage days to downscale SSM from a coarse resolution
(25 km) to a finer resolution (1 km) through an intermediate scale
(5 km). Assume that nF2 spatially distributed pixels Go

fine (o=1, 2,…,
nF2) and n pixels GO

coarse (O=1, 2,…, n) are the fine- and coarse-re-
solution pixels, respectively, where F is the scale factor. Let Z1(·) denote
the SSM observations on full-coverage days. Thus, the GWATARK es-
timation is

= +Z G m G R Gˆ ( ) ˆ ( ) ˆ ( ),o o o1
fine fine fine (1)

where m Gˆ ( )o
fine and R Gˆ ( )o

fine are the trend component and the residual
component at fine resolution, respectively. The GWATARK is a hybrid
method that comprises GWR for spatial trends and ATAK for down-
scaling regression residuals. For details, the reader is referred to Jin
et al. (2017).

The SSM predictions at 1-km spatial resolution can be obtained by
repeated use of Eq. (1). A two-step downscaling process was employed
because of the available two-scale ancillary information. The scale
factor in each implementation of the downscaling would narrow to 5
from 25. The GWATARK is implemented twice in this paper, down-
scaling SSM from 25 km to 5 km and then to 1 km. Let Gi

l be pixel Gi at l
(l=0 for 25 km, 1 for 5 km, and 2 for 1 km) resolution, where i=1, 2,
…, num. The parameter num is different for each scale and it represents
the total number of observation pixels at the current spatial resolution.
For convenience, we define that pixel Gi

2 is located within pixel Gi
1 and

that pixel Gi
1 is located within pixel Gi

0. As mentioned in Introduction
section, LST, NDVI and soil texture are related to SSM. In this paper,
four ancillary variables, i.e., sand, clay, LST, and NDVI, are employed as
the covariates in SSM downscaling. Only two of the three SSM texture
parameters were chosen because the silt content can be represented by
a combination of the sand and clay contents. For spatial trends, the
relationship between the SSM and four covariates at fine resolution is
modeled by linear regression by using the GWR model. And ATAK is
employed to downscale the regression residuals to obtain predictions of
the residuals at fine resolution. Let x(·) denote the covariates. First, we
set l=1, meaning that the AMSR-E SSM 25-km-resolution data are

Fig. 3. Days of valid remote sensing data during the six-month period for ascending and
descending overpasses.
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downscaled to 5-km resolution, which can be written as:

∑
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Then, we set l=2, meaning the above SSM estimations at 5-km
resolution are downscaled to 1-km resolution (Eq. (3)), where Z Gˆ ( )i1

2 is
the estimated SSM value of pixel Gi at 1-km spatial resolution:
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3.2. Downscaling on cloudy days

As mentioned above, the stepwise downscaling process based on
GWATARK is limited by its requirement for full-coverage input data. On
cloudy days, the CSMDA data were incorporated to address this pro-
blem. First, the collected CSMDA SSM data are interpolated spatially
using a kriging method (Cressie, 1988) to obtain 1-km-resolution SSM
data for the period of interest, which includes both full-coverage and
cloudy days:

∑=
=

Z G λ Z Gˆ ( ) ˆ ( )i
e

K

e e2
2

1
2

0

(4)

where λe represents the weights and K indicates how many coarse
neighboring pixels are used to estimate the given fine-resolution pixels

in ordinary kriging.
Second, some stable ancillary information correlated to SM is used

to perform clustering of the fine pixels. Here, the DEM and the sand and
clay contents are selected as cluster variables, and the K-means tech-
nique (Likas et al., 2003), which is a common clustering method, is used
to identify different regions of similarity within the 1-km gridded
pixels. The recurrence of K-means technique would be implemented
with various clustering numbers. Then, for each result of clustering, the
correlations between 1-km CSMDA-derived and GWATARK-estimated
SSM data could be calculated at corresponding clusters. In this ex-
periment, the clustering number is set to 50 because the mean of the
correlations reaches the highest value, with varying the clustering
number from 20 to 100 at an interval of 10. By comparing the 1-km
CSMDA-derived SSM data with the GWATARK-estimated SSM data (see
Section 3.1), a relationship for each cluster between the two datasets
can be derived:

= + ⋅Z a b Z ,d
d d

d
1 2 (5)

where ad and bd are regression parameters, and Z d
1 and Z d

2 are 1-km
SSM data on the same day for the dth cluster estimated from the AMSR-E
and CSMDA SSM data, respectively.

Based on the effectiveness of the established relationships for full-
coverage days, the relationships in Eq. (5) can be applied for all days.
Thus, the 1-km CSMDA-derived SSM data can be used as input data to
acquire the corresponding 1-km-resolution estimates of SSM. At this
point, temporally continuous SSM estimations at 1-km resolution can be
obtained for the period of interest.

Given that ground-based measurements can provide high-quality
SSM information that could increase estimation accuracy (Kaheil et al.,
2008), the AMSR-E SSM products should be calibrated using ground-
based measurements as a first step. This is independent of the down-
scaling process and it could reduce systematic errors in the downscaled
results (Merlin et al., 2013). Support vector regression (SVR) (Vapnik,
2000; Ahmad et al., 2010) could be used to model the relationships
between the AMSR-E data and the in situ observations of the two
SMTMS networks. Fitted SVR models for the two three-month periods
of this study can only be applied to regions that have conditions similar
to the corresponding ground-based measurements. The value ranges of
conditional information relating to the ground stations in the different
SMTMS networks could be considered as restrictive elevations of
3634.5 ± 201.5 m and 4732.5 ± 144.5 m, sand contents of

Fig. 4. Flowchart of the proposed downscaling
methodology.
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0.4111 ± 0.0554 and 0.4849 ± 0.0175, and clay contents of
0.2014 ± 0.0302 and 0.1918 ± 0.0143 for the first (corresponding to
Maqu stations) and second (corresponding to Naqu stations) three-
month periods, respectively.

4. Results and discussion

The proposed methodology outlined above was applied using the
25-km-resolution daily AMSR-E SSM product over the TP for a six-
month period (from May 2010 to October 2010). For its validation,
several statistical parameters were computed between the 1-km SSM
estimations and the corresponding in situ data, i.e., the root mean
square error (RMSE) (m3m−3), mean error (ME) (m3m−3), correlation
coefficient (R), and slope (S). The methodology described in this paper
was implemented using the R language for statistical computing (Team,
2014).

4.1. AMSR-E SSM downscaling on cloud-free days

Figs. 5 and 6 display the 25-km AMSR-E SSM images and 1-km SSM
estimations on two cloud-free days for ascending and descending cases.
The spatial variations of the downscaled SSM are similar, i.e., SSM
generally decreases from the southeast toward the northwest over the
entire study area, but with an increase in the northwest corner. The
estimated SSM images display close correlation with the spatial dis-
tribution of vegetation; areas of higher vegetation coverage show
higher SM, and vice versa.

Fig. 7 compares the 1-km SSM estimations with in situ measure-
ments. For both overpasses, the scatter plots (where one point re-
presents one day) generally follow the 1:1 line, especially for the as-
cending overpasses. The statistical indices also indicate good agreement
between the ground-measured and downscaled SSM data over the two

networks for the ascending overpasses, with an RMSE value of
0.127m3m−3, ME value of −0.046m3m−3, R value of 0.737, and S
value of 0.786. Furthermore, the RMSE value of 0.137m3m−3, ME
value of −0.054m3m−3, R value of 0.685, and S value of 0.623 in-
dicate the same conclusion for the descending overpasses.

The R values for both overpass cases are< 0.75. This could reflect
the loss of some information when considering only four ancillary
variables (i.e., LST, NDVI, and sand and clay contents) in the
GWATARK-estimation method. The incorporation of other ancillary
variables such as soil temperature and evapotranspiration could pro-
vide useful complementary information on SSM. If the ancillary vari-
ables are available at several different resolutions, the stepwise method
would make use of multiscale ancillary information to explain the SSM
and narrow the scale factor in each implementation of the downscaling.
The GWATARK used in two-step downscaling could improve the ability
of proposed downscaling strategy to effectively settle the local spatial
heterogeneity and the change of support problem. Furthermore, the
stepwise downscaling method need not be limited to just two steps;
additional intermediate scales could be employed easily in the proposed
strategy. The applicability of the downscaling model might be ambig-
uous when the scale factor is large, stepwise downscaling is able to
avoid this problem. In this paper, the scale factor is reduced from 25
(directly downscaling from 25 km to 1 km) to 5. Although multiple
covariates and multiscale data could contribute useful information,
they would also introduce some errors, causing by the errors of input
data and multiscale models. For instance, additional uncertainty would
result from the use of a greater number of intermediate scales, which
would need to be balanced against the accuracy of the derived esti-
mations. Moreover, the relationships between SSM and the ancillary
variables were assumed scale-invariant for SSM stepwise downscaling
at the coarse and fine scales. In future research, scale effects on the SSM
downscaling process should be investigated.

Fig. 5. SSM from ascending overpasses on two cloud-free days (i.e., May 10 and October 8, 2010): (a) and (e) 25-km original AMSR-E image, (b) and (f) 25-km SSM image, (c) and (g)
downscaled 5-km SSM image, and (d) and (h) downscaled 1-km SSM image.

Fig. 6. SSM from descending overpasses on two cloud-free days (i.e., May 18 and July 30, 2010): (a) and (e) 25-km original AMSR-E image, (b) and (f) 25-km SSM image, (c) and (g)
downscaled 5-km SSM image, and (d) and (h) downscaled 1-km SSM image.
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4.2. SSM estimations at fine resolution on cloudy days

Because of the requirement for full-coverage visible/infrared input
data, the GWATARK stepwise downscaling method cannot be applied
on cloudy days. The CSMDA data were combined to estimate fine-re-
solution data for cloudy days. The means of correlations between ori-
ginal AMSR-E data and CSMDA data on each of full-cover days for as-
cending and descending overpasses are larger than 0.5 (Fig. 8(a)). As
described in Section 3.2, on cloudy days, fine-resolution SSM is ob-
tained by combining 1-km GWATARK-estimations (see Section 4.1)
with 1-km CSMDA-derived SSM data (Eq. (5)). Instead of using CSMDA-
derived SSM, a land surface model could be used to provide 1-km SSM.
However, it must be noted that the forcing data used in a land surface
model, including atmospheric and environmental geophysical data,
must also satisfy the requirement for full-coverage, which could be
achieved using reconstruction techniques.

Fig. 8(b) shows substantial discrepancy between the 1-km CSMDA-
derived SSM data and the daily averaged in situ observations from the
ground stations during the six-month study period, with a large RMSE
value of 0.161m3m−3, large ME value of 0.114m3m−3, low S value of
0.172, and small R value of 0.345. The errors associated with the kri-
ging method (Eq. (4)) might contribute most to such discrepancy be-
cause ordinary kriging ignores the change-of-support problem in the
estimation process. The established models for cloud-free days between
the GWATARK-estimated SSM and the 1-km CSMDA-derived SSM data
were trained for each cluster. Then, they were used to generate the 1-
km SSM estimations for cloudy days, which could reduce model errors
under different conditions and improve the SSM estimation accuracy. In
this experiment, the DEM and soil texture stable variables were chosen
as clustering factors. In future, alternative references to distinguish
conditions could include surface slope, land cover classification, and
other factors.

Fig. 7. 1-km SSM estimations versus in situ SSM, together with a summary of the comparison results on cloud-free days: (a) ascending overpasses and (b) descending overpasses.

Fig. 8. (a) Boxplot of correlations between original AMSR-E data and CSMDA data on each of full-cover days for both overpasses and (b) 1-km CSMDA-derived SSM data versus in situ
SSM on all days.
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Figs. 9 and 10 show 25-km CSMDA images and 1-km SSM estima-
tions for two cloudy days for ascending and descending overpasses,
respectively. The blue areas in the images represent the largest SSM
values. Similar to the trends of the downscaled images shown in Figs. 5
and 6, the spatial variations of the 1-km SSM show a general decrease
from the southeast toward the northwest. The downscaled SSM esti-
mations present greater spatial detail when compared with the coarse
images. The scatter plots of the 1-km SSM estimations and the ground-
based measurements on cloudy days for the ascending and descending
overpasses are illustrated in Fig. 11. The values of RMSE, ME, R, and S
are 0.138m3m−3, −0.056m3m−3, 0.868, and 0.556, respectively, for
the ascending overpasses, and 0.151m3m−3, −0.086m3m−3, 0.759,
and 0.504 for the descending overpasses. These statistical indices in-
dicate that the 1-km SSM estimations agree well with the ground-based

observations. In this experiment, the simple linear regression models
were applied to fill the gap of SSM estimations on cloudy days, bene-
fitting from its simple, tending to realize and few parameters. However,
the dynamic variation rules of SSM were ignored by using such general
statistical techniques. In future research, the SSM temporal information
would be involved and make a contribution to accurate estimations.

4.3. Temporally continuous series of fine-resolution SSM

To investigate further the performance of the downscaling metho-
dology, time series comparisons were undertaken on two stations and
two 25-km grids. The temporal profiles of in situ SSM measurements
obtained at Stations A and B, and the corresponding downscaled 1-km
SSM estimations from Grids A and B, in the Maqu and Naqu regions,

Fig. 9. SSM from ascending overpasses on two cloudy days (i.e., June 7 and October 27, 2010): (a) and (c) 25-km CSMDA image, and (b) and (d) corresponding 1-km SSM estimations.

Fig. 10. SSM from descending overpasses on two cloudy days (i.e., June 27 and October 10, 2010): (a) and (c) 25-km CSMDA image, and (b) and (d) corresponding 1-km SSM estimations.
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respectively, are presented in Fig. 12. For both overpasses, the time
series of downscaled SSM estimations show trends similar to the
ground-based measurements. In addition, Fig. 13 shows comparisons of
the temporal profiles of the downscaled 1-km SSM estimations, in situ
SSM measurements, and original 25-km SSM data in Grids A and B for
ascending and descending overpasses, together with the RMSE and R
statistical indices. The presented temporal profiles contain the ag-
gregated averages of the 1-km SSM estimations and in situ SSM mea-
surements within Grids A and B, and the corresponding 25-km SSM
data from AMSR-E and CSMDA. The RMSE and ME values for each Grid
for both overpasses are reduced when compared with the original 25-
km SSM data. The aggregated averages of in situ SSM measurements

might be inadequate for capturing the gridded SSM values because of
the small number of ground stations within each grid.

As illustrated in the time series comparisons, the four temporal
profiles for Stations A and B and for Grids A and B represent the sea-
sonal variations well, with large SSM values from June to September.
Although comparison at the same spatial resolution could overcome the
representativeness errors to some extent, the complicated uncertainties
in the aggregation processes should be considered further. In general,
satisfactory performance of the proposed downscaling methodology
could be concluded.

For all days, the discrete distributions of downscaled 1-km SSM
estimations for the different overpasses and cases are illustrated in

Fig. 11. 1-km SSM estimations versus in situ SSM, together with a summary of the comparison results on cloudy days: (a) ascending overpasses and (b) descending overpasses.

Fig. 12. Temporal profiles of SSM measurements at
the ground stations and the corresponding downscaled
1-km SSM estimations. Three months’ data (from May
2010 to July 2010) at Station A within the Maqu re-
gion: (a) ascending overpasses and (b) descending
overpasses, and three months’ data (from August 2010
to October 2010) at Station B within the Naqu region:
(c) ascending overpasses and (d) descending over-
passes.
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Fig. 14 using a sample Taylor diagram in terms of three statistics: R, the
standard deviation, and RMSE. The downscaled comparison results
showed good correlation (R≥ 0.7) for both overpasses, although the
results for the ascending overpasses had better performance, as indicate
by the lower RMSE value of 0.133m3m−3. This might be related to
additional errors in the AMSR-E descending product or, conversely, to
the benefit derived from the stable LST in the AMSR-E ascending pro-
duct. The differences between the downscaled results and the ground-
based observations are attributable not only to the prediction errors of
the models and to the measurement errors of the original SSM ob-
servations and multiscale covariates, but also to the representativeness
errors of the point and 1-km gridded SSM data. The errors of input data
would propagate to the following phases in downscaling process which
have great influence on the downscaled results. The higher accuracies
of input products (including SSM, LST, NDVI and soil texture products)
represent the better downscaled results. Moreover, different remotely

sensed SSM products would take various values for the same pixels and
may have quite different accuracies. The accuracy of downscaled SSM
highly depends on the accuracy of original AMSR-E data. In this ex-
periment, the downscaling strategy has been realized on the LPRM
AMSR-E product, which can be extended to other SSM products. For
instance, SSM product of Climate Change Initiative from the European
Space Agency will be attempted in our future work. The ground mea-
surements are point observations and are insufficient to describe the
spatial pattern of SSM. It is still needed to validate the spatial patterns
of the downscaled SSM. However, this requires a spatially distributed
reference dataset which are still not available. The precipitation might
be an alternative dataset as an indirect reference.

The benefit from the point measurements is derived by their use to
enhance the SSM estimations. We have undertaken preliminary ex-
periments using an SVR model for calibration. The fitted SVR model can
only be used under conditions similar to the ground stations, because
the ground stations were concentrated within a limited area and not
distributed uniformly throughout the entire region. In fact, additional
features could be derived from the temporal variations of the in situ
SSM measurements. Our future research efforts will be aimed at im-
proving the downscaled SSM estimations by integrating additional
characteristics of the temporal changes of SSM using time series ana-
lysis methods.

5. Conclusions

Downscaling offers the potential to transform coarse-resolution SSM
observations to a finer resolution to support monitoring over large
areas. To obtain temporally continuous SSM estimations under het-
erogeneous condition, this study developed a downscaling methodology
to overcome the full-coverage variable limitation of existing down-
scaling methods that use visible/infrared data as ancillary information.
Under the proposed methodology, the GWATARK method is used to
address local spatial heterogeneity, and multiscale ancillary variables
are incorporated for better representation of the spatial pattern of SSM
at different resolutions. For cloud-free days, the GWATARK-based

Fig. 13. Temporal profiles of in situ SSM measure-
ments, downscaled 1-km SSM estimations, and ori-
ginal 25-km SSM data in Grids A and B. Three months’
data (from May 2010 to July 2010) in Grid A within
the Maqu region: (a) ascending overpasses and (b)
descending overpasses, three months’ data (from
August 2010 to October 2010) in Grid B within the
Naqu region: (c) ascending overpasses and (d) des-
cending overpasses.

Fig. 14. Sample Taylor diagram displaying statistical comparisons between 1-km SSM
downscaled estimations and in situ SSM measurements during the six-month study period
for both overpasses.
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stepwise method is applied to downscale coarse-resolution SSM pro-
ducts by integrating multiscale ancillary data. Then, the downscaled
results obtained for cloud-free days are used to generate fine-resolution
SSM estimations for cloudy days by modeling the relationship with
interpolated fine-resolution SSM data from another source. This method
was demonstrated through application to the AMSR-E SSM products for
ascending and descending overpasses of the TP, to produce temporally
continuous 1-km-resolution SSM estimations for a six-month period. In
comparison with the in situ measurements, the adopted statistical in-
dices showed that the downscaled SSM estimations were reasonably
accurate. The same comparison was also performed between the cor-
responding aggregated SSM values for two 25-km grid pixels to avoid
scaling differences in the validation. Both qualitative and quantitative
evaluations indicated the high potential of our proposed method for
producing fine-resolution SSM images. However, the uncertainties as-
sociated with both the input variables and the models, which might
have considerable effect on the accuracy of the downscaled SSM esti-
mations, should be explored in future research. Despite the noted lim-
itations, the proposed user-friendly methodology could be applied to
other continuous parameters, and it could also be extended easily by
the incorporation of additional multiscale ancillary covariates to attain
temporally continuous series.
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