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Abstract Land surface evapotranspiration (ET) is an important component of the surface energy budget
and water cycle. To solve the problem of the spatial-scale mismatch between in situ observations and
remotely sensed ET, it is necessary to find the most appropriate upscaling approach for acquiring ground
truth ET data at the satellite pixel scale. Based on a data set from two flux observation matrices in the middle
stream and downstream of the Heihe River Basin, six upscaling methods were intercompared via direct
validation and cross validation. The results showed that the area-weighted method performed better than
the other five upscaling methods introducing auxiliary variables (the integrated Priestley-Taylor equation,
weighted area-to-area regression kriging [WATARK], artificial neural network, random forest [RF], and deep
belief network methods) over homogeneous underlying surfaces. Over moderately heterogeneous
underlying surfaces, the WATARK method performed better. However, the RF method performed better over
highly heterogeneous underlying surfaces. A combined method (using the area-weighted and WATARK
methods for homogeneous and moderately heterogeneous underlying surfaces, respectively, and using the
RF method for highly heterogeneous underlying surfaces) was proposed to acquire the daily ground truth ET
data at the satellite pixel scale, and the errors in the ground truth ET data were evaluated. The Dual
Temperature Difference (DTD) and ETMonitor were validated using ground truth ET data, which solve the
problem of the spatial-scale mismatch and quantify uncertainties in the validation process.

1. Introduction

Land surface evapotranspiration (ET) includes evaporation from soil and water bodies, vegetation
interception evaporation, and transpiration. As an important link in the surface water cycle and energy
transfer, accurate estimations of ET benefit global climate change research and have great practical value
for water resource management at the regional to global scale (Anderson et al., 2012; Jung et al., 2010).

Since the 1970s, with the development of remote sensing technology, the estimation of remotely sensed
evapotranspiration (RS_ET) has become an effective method to obtain regional and global ET (Kalma et al.,
2008; Li et al., 2009; Wang & Dickinson, 2012). Currently, a variety of medium- to low-resolution (≥1-km)
RS_ET products have been released, including MOD16 (MODIS global ET; 8 day, 1 km; Mu et al., 2011),
Global Land Evaporation Amsterdam Model ET (daily, 25 km; Miralles et al., 2011), ET-ITC (monthly, 10 km;
Chen et al., 2014), Breathing Earth System Simulator ET (8 day, 1 km; Jiang & Ryu, 2016), Global Land
Surface Satellite ET (8 day, 5 km before 2000/1 km after 2000; Yao et al., 2013), ETWatch (daily/monthly,
1 km; Wu et al., 2012), ETMonitor (8 day, 1 km; Hu & Jia, 2015), and DTD (Dual Temperature Difference; daily,
1 km; L. S. Song et al., 2016) products. However, uncertainties with respect to model mechanisms,
parameterization schemes, model inputs, and scaling issues (Jia et al., 2012) can limit the performance of
various RS_ET estimation models. The heterogeneity of underlying surfaces and the complexity of
near-surface meteorological conditions both reduce the accuracy of RS_ET products (Liou & Kar, 2014; Liu
et al., 2016). The mean absolute percentage errors (MAPEs) of the current RS_ET products at the
instantaneous, daily, monthly, and annual scales are approximately 15–30%, 14–44%, 9–35%, and 5–21%,
respectively (Ershadi et al., 2014; Kalma et al., 2008; Miralles et al., 2016; Velpuri et al., 2013; Wang et al.,
2008; Yao et al., 2013). Therefore, RS_ET products must be validated using ground measurements
before application.
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In recent years, most validations for RS_ET products have been conducted over homogeneous underlying
surfaces (Jia et al., 2012). When examining heterogeneous underlying surfaces, however, the validation of
RS_ET products remains a challenge. A major problem is the spatial-scale mismatch between in situ measure-
ments and RS_ET products (L. S. Song et al., 2016). Therefore, it is important to select appropriate validation
pixels. When a pixel located in the instrument or multiple pixels around the instrument are selected as the
validation pixels, the error is small over homogeneous underlying surfaces; larger errors are generated over
heterogeneous underlying surfaces. When the pixels located in the flux source areas are selected, the foot-
print value within the source areas is normalized as the relative weight. The footprint-weighted average of
the remote sensing estimates within these pixels is compared with in situ measurements. Although the pro-
blem of spatial-scale mismatch can be partially addressed, the heterogeneity of the subpixel will have a
greater impact on the results of the validation (Bai et al., 2015; Jia et al., 2012). Therefore, to reduce the uncer-
tainty caused by the spatial-scale mismatch that arises during validation, it is necessary to acquire “ground
truth” ET data at the satellite pixel scale over heterogeneous underlying surfaces. At present, methods for
the acquisition of ground truth ET data at the satellite pixel scale over heterogeneous underlying surfaces
mainly include average method, simulation method, geostatistical method, and machine learning method.

The average methods include arithmetic average (Liu et al., 2016; Peng et al., 2008), area-weighted (AW) aver-
age (Beyrich et al., 2006; Ezzahar et al., 2009; Gottschalk et al., 1999; Liu et al., 2016), and footprint-weighted
(Evans et al., 2012; Liu et al., 2016) methods. Based on the measurements from the Heihe Watershed Allied
Telemetry Experimental Research-Multi-Scale Observation Experiment on Evapotranspiration (HiWATER-
MUSOEXE) and a high-resolution land cover map derived from aircraft remote sensing, F. N. Xu et al.
(2017) applied the AW method over a heterogeneous landscape with footprint analysis and multivariate
regression. The simulation method for upscaling land surface water and heat fluxes can be divided into
empirical and statistical models (Fang et al., 2016; Sun et al., 2011; Zhang et al., 2001), semiempirical and semi-
theoretical models (Liu et al., 2016), and theoretical models (Gottschalk et al., 1999; Heinemann & Kerschgens,
2005). Based on mulitsite measurement data from HiWATER-MUSOEXE, Liu et al. (2016) proposed an upscal-
ingmethod integrated Priestley-Taylor equation (P-T) over heterogeneous surface to overcome the limitation
of AW method that is mostly appropriate for homogeneous surface. Geostatistical methods mainly involve
these upscaling methods based on kriging (Ge et al., 2015; Hu et al., 2015; Stein, 2012) and the Bayesian the-
ory (Bernardo & Smith, 2001; Gao et al., 2014; Qin et al., 2013; Shi et al., 2015). Based on the data from the
HiWATER-MUSOEXE, Ge et al. (2015) used the normalized difference vegetation index (NDVI), land surface
temperature (LST), fraction of vegetation cover (FVC), and wind speed as auxiliary information along with
the area-to-area regression kriging) method to upscale the H from the eddy covariance (EC) scale to large
aperture scintillometer (LAS) scale. The upscaled results were generally close to the LAS observations.
Upscaling methods based on machine learning include artificial neural network (ANN) (Chen et al., 2013;
Landeras et al., 2008; Wang et al., 2016), regression tree (Ghahreman & Sameti, 2014; Jung et al., 2011;
Metzger et al., 2013; Rahimikhoob, 2014; K. Xu et al., 2017), support vector machine (Yang et al., 2006), and
random forest (RF; Bodesheim et al., 2018), which have been used in surface flux upscaling. Alternative
machine learning methods have been utilized to upscale other parameters; for example, the deep belief net-
work (DBN; X. D. Song et al., 2016) is used in soil moisture upscaling. At present, machine learning methods
generally conduct upscaling from site to regional scale. Jung et al. (2011) trained model tree ensembles and
then upscaled the monthly LE from the site scale to the global scale and produced global products at 0.5°
spatial resolution for monthly average value. In the most recent study of Bodesheim et al. (2018), they
performed the upscaling using the trained random decision forest and produced continuous half-hourly
products at 0.5° spatial resolution in the global scale.

Although there are many upscaling methods, most upscaling methods currently developed for ET are in the
exploratory stage. Due to the heterogeneity of the underlying surfaces and the complexity of near-surface
meteorological conditions, the applicability of different upscaling methods varies, and each method has cons
and pros. Therefore, carrying out a comparative study of various upscaling methods is necessary in order to
determine themost appropriate upscalingmethod over heterogeneous surfaces to obtain ground truth ET data
at the satellite pixel scale and to reduce uncertainty due to spatial-scale mismatch in the validation process.

In summary, this study was based on two matrices data from the HiWATER experiment: the MUSOEXE con-
ducted in the middle stream of the Heihe River Basin (HRB) from May to September in 2012 and the
Hydrometeorological Observation Network conducted in the downstream of the HRB from 2013 to 2015.
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Six upscaling methods—the AW method, P-T method, weighted area-to-area regression kriging (WATARK)
method, ANN method, RF method, and DBN method—were intercompared via direct validation taking the
LAS measurements as the satellite pixel reference and cross validation using three-cornered hat method
(TCH; Galindo & Palacio, 1999). Finally, daily ground truth ET data were acquired using a combined method
at the satellite pixel scale to validate RS_ET products over heterogeneous surfaces.

2. Study Area and Data
2.1. Study Area and Experiment

The HiWATER experiment was performed in the HRB (37.7°–42.7°N, 97.1°–102.0°E), which is located in a semi-
arid region of northwestern China and covers approximately 1,432,000 km2 (Figure 1a). The underlying sur-
faces of the HRB are primarily characterized by glaciers, frozen soil, alpine meadow, and forest in the
upstream area; by desert and crops such as maize, wheat, and vegetable in the middle stream area; and by
riparian ecosystems and widespread desert in the downstream area (Li et al., 2013).

The HiWATER-MUSOEXE, the thematic experiment in HiWATER, was conducted in the middle stream of the
HRB between May and September 2012 and involved a flux observation matrix composed of two nested
matrices: one large experimental area (30 km × 30 km) in an oasis-desert area and one kernel

Figure 1. Spatial locations of (a) HRB and stations in the (b) middle stream and (c) downstream areas.
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experimental area (5.5 km × 5.5 km) within the Zhangye Oasis (Figure 1b). According to the distribution of
crops, shelterbelts, residential areas, roads, and canals, as well as the soil moisture and irrigation status, the
kernel experimental area was divided into 17 elementary sampling plots (including site 1 = vegetable, site
4 = village, site 17 = orchard, and other sites = maize). One EC system (two at site 15—Daman superstation)
and one automatic weather station (AWS) were included per plot for the synchronous observation of water
and energy fluxes and meteorological elements. In addition, three poplar trees near sites 6, 8, and 17 were
each installed with three thermal dissipation probes (TDPs) installed at a height of 1.3 m to observe transpira-
tion of the shelterbelt. Three groups of optical LASs were installed in three 3 × 1 MODIS pixels (from west to
east: LAS1, LAS2, and LAS3). In addition, one group of LASs was installed in one 2 × 1 MODIS pixel (LAS4).
More details regarding the HiWATER-MUSOEXE field campaign can be found in Li et al. (2017). The sites
located in the three 3 × 1 and one 2 × 1 MODIS pixels were selected to study the ET upscaling methods based
on the 11 EC and AWS sets, 4 LAS groups, and 3 TDP groups at sites 4–8, 11–15, and 17 (Table 1).

The Hydrometeorological Observation Network of the HRB has been operational since July 2013 during the
HiWATER experiment. There are five sites installed in Ejina Oasis in the downstream of the HRB, constituting a
flux observation matrix (3 km × 2 km; Figure 1c), including the Sidaoqiao superstation (Tamarix), Farmland
station (farmland, mainly planting melon), Bare land station (bare land), Mixed forest station (sparse
Populus euphratica and Tamarix), and Populus euphratica station (sparse Populus euphratica). Each site was
installed with one EC and one AWS to simultaneously observe H, LE, and meteorological elements. In addi-
tion, according to the different heights and diameters at breast height of Populus euphratica, three Populus
euphratica trees were outfitted with three TDPs at a height of 1.3 m to observe the transpiration of Populus
euphratica near the Mixed forest station. From July 2013 to May 2015, two groups of LASs (LAS5 and LAS6)
were installed in two 2 × 2 MODIS pixels. Since May 2015, two groups of LASs have been adjusted to one
group of LAS (LAS7), which was installed in one 2 × 1 MODIS pixel. Detailed information regarding the sites
and instruments is provided in Table 1 and Figure 1c.

To obtain reliable observation data, the consistency analysis of observation instruments is particularly impor-
tant. Before the HiWATER experiment, two comparison experiments for surface energy fluxmeasurement sys-
tems were conducted, including one in the Bajitan Gobi desert (a nearly flat and open surface) to the west of
Zhangye City in the middle stream from 14 to 24 May 2012 and the other in the shrubs (relatively homoge-
neous underlying surfaces) around Ejin Banner in the downstream from 27 June to 3 July 2013 (Xu et al.,
2013). The comparison experiment in the middle stream involves 7 LASs, 20 ECs, and 18 radiometers; the
comparison experiment in the downstream involves 2 LASs, 6 ECs, and 6 radiometers. The results of two com-
parison experiments showed that sensible heat fluxes between the LAS1–LAS7 and the corresponding ECs
were consistent in the middle stream and downstream, with regression slope values 3%, 1%, 1%, 5%, 8%,
and 4% and R values 0.97, 0.98, 0.98, 0.97, 0.96, and 0.95, respectively. It is noted that LAS5 and LAS7 have
the same consistency because their corresponding ECs are the same. Therefore, EC and LAS measurements
were consistent with each other for homogeneous underlying surface, leading to the conclusion that the
LAS measurements and related ECs were also comparable. More details can be found in Xu et al. (2013)
and Liu et al. (2016).

2.2. Data Processing
2.2.1. Flux and Meteorological Data
The raw EC data were stored at a sampling frequency of 10 Hz and processed using the EdiRe (http://www.
geos.ed.ac.uk/homes/jbm/micromet/EdiRe/) software packages, including spike detection, coordinate rota-
tion (2-D rotation), sonic virtual temperature correction, corrections for density fluctuation (Webb-
Pearman-Leuning correction), and frequency response correction. The EC data were finally converted into
half-hour-averaged flux data. A quality assessment was performed using the quality flags (0, 1, and 2) accord-
ing to both stationary test and integral turbulence characteristics test. The flux data for flag 2 were discarded.
The 30-min flux data were screened as follows: data from periods of sensor malfunction; data within 1 hr
before or after precipitation; incomplete 30-min data when the missing data constituted more than 3% of
the 30-min raw record; were rejected (Liu et al., 2011, 2013). The Bowen ratio closure method was used to
force energy balance closure in our study (Twine et al., 2000; Z. W. Xu et al., 2017). To obtain daily ET, the non-
linear regression method was used to establish the relationship between LE and Rn and to fill the gaps
between the 30-min flux data. Daily ET was calculated using the continuous 30-min data. In addition, days
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Table 1
Details Regarding Meteorological and Flux Sites in Two Flux Observation Matrices for Middle Stream and Downstream of the HRB

Observation items Type, manufactures Height/depth (m) Site Duration

Eddy covariance system
sensible and latent heat flux

CSAT3/Li7500A, Cambell/Li-cor, USA 4.2 (6.2 after 19 August) 4 site 4: 2012.5.31–9.17
4.6 6 site 6: 2012.5.28–9.21
3.8 7 site 7: 2012.5.29–9.18
5 13 site 13: 2012.5.27–

9.20
4.5, 34 15 site 15: 2012.5.25-

3.5 (2013.7.14–2015.10.29) F site F: 2013.7.14–
2015.10.29

8 S site S: 2013.7.6-
CSAT3/Li7500, Cambell/Li-cor, USA 3 5 site 5: 2012.6.03–9.18

3.2 8 site 8: 2012.5.28–9.21
3.5 11 site 11: 2012.5.29–

9.18
3.5 12 site 12: 2012.5.28–

9.21
4.6 14 site 14: 2012.5.30–

9.21
22 P site P: 2013.7.12–

2016.4.21
22 M site M: 2013.7.12-
3.5 B site B: 2013.7.10–

2016.3.14
CSAT3/EC150, Campbell, USA 7 17 site 17: 2012.5.31–

9.17
3.5 (2013.7.14–2014.4.15) F site F: 2013.7.14–

2014.4.15
Large aperture
scintillometer sensible
heat flux

BLS900, Scintec, Germany 33.45 (path length: 3256) LAS1 2012.6.07–9.19
zzlas, RR9340, Rainroot, China 2012.6.16–9.19
BLS900, Scintec, Germany 33.45 (path length: 2841) LAS2 2012.6.07–9.19
BLS450, Scintec, Germany 2012.6.18–9.19
BLS900, Scintec, Germany 33.45 (path length: 3111) LAS3 2012.6.06–9.20

LAS, Kipp&zonen, Netherland 2012.6.19–9.20
BLS450, Scintec, Germany 22.45(path length: 1854) LAS4 2012.6.02-

zzlas, RR9340, Rainroot, China 2012.6.21–9.20
BLS900, Scintec, Germany 25.5 (path length: 2390) LAS5 2013.7.11–2015.4.24
BLS900, Scintec, Germany 25.5 (path length: 2380) LAS6 2013.9.16–2015.4.24
BLS900, Scintec, Germany 25.5 (path length: 2350) LAS7 2015.4.26–

2015.10.30
Air pressure PTB110, Vaisala, Finland - 17 AWS4: 2012.5.10–

9.17
CS100, Campbell, USA - 4, 5, 6, 7, 8, 11, 12, 13,

14, 15, S
AWS5: 2012.6.04–

9.18
AV-410BP, Avalon, USA - M AWS6: 2012.5.09–

9.21
Precipitation TE525MM, Texas Electric, USA - 4, 5, 6, 7, 8, 11, 12, 13,

14, 15, S
AWS7: 2012.5.28–

9.18
AWS8: 2012.5.14–

9.21
52203, RM Young, USA - 17, M AWS11: 2012.6.02–

9.18
Wind speed/direction 010C/020C, Met One, USA 5, 10 6 AWS12: 2012.5.10–

9.21
10 4, 5, 7, 8 AWS13: 2012.5.06–

9.20
5, 7, 10, 15, 20, 28 S AWS14: 2012.5.06–

9.21
3001, RM Young, USA 10 11 AWS15: 2012.5.10-

28 M, P AWS17: 2012.5.12–
9.17
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with a percentage of missing 30-min data greater than 50%were consideredmissing days and were not used
in the upscaling analysis. Detailed information about the EC raw data processing steps can be found in Xu
et al. (2013) and Liu et al. (2013).

The LAS system provided a measurement of the structure parameter for the refractive index of air (Cn
2). The

raw LAS data were first averaged to 30 min. Then, the path average sensible heat fluxes were iteratively cal-
culated combining meteorological data (e.g., wind speed, air temperature, and pressure) based on the
Moninin-Obukhov Similarity Theory. To perform quality control for the raw LAS data, the criterion
Cn

2 < 0.193 L8/3λ1/3D5/3 (L is the path length, D is the diameter of optical aperture, and λ is wavelength)
was applied to remove data with values exceeding the saturated condition (Ochs & Wilson,1993). Data were
rejected under the following circumstances: if the demodulation signal was small, if collected within 1 hr

Table 1 (continued)

Observation items Type, manufactures Height/depth (m) Site Duration

034B, Met One, USA 10 12, 13, 14, 17 AWS P: 2013.7.11–
2016.4.21

Windsonic, Gill, UK 3, 5, 10, 15, 20, 30, 40 15 AWS M: 2013.7.13-
Air temperature/humidity HMP45D, Vaisala, Finland 5 12, 13, 14 AWS S: 2013.7.12-

HMP45C, Vaisala, Finland 5 4, 5, 17 AWS F: 2013.7.10–
2015.10.29

28 M, P AWS B: 2013.7.10–
2016.4.21

HMP45AC, Vaisala, Finland 5 7, 8, 11
5, 10 6

AV-14TH, Avalon, USA 3, 5, 10, 15, 20, 30, 40 15
HC2S3, Campbell, USA 5, 7, 10, 15, 20, 28 S

Four-component radiation CNR4, Kipp&Zonen, Netherland 6 6, 8, 13, 14
4 7, 12
10 S
6, 24 P
6 B, F
24 M

CNR1, Kipp&Zonen, Netherland 6 4, 17
4 5, 11

PSP&PIR, Eppley, USA 12 15
CM21,

Kipp&Zonen, Netherland(2013.8–
2014.4)

6 F

Soil moisture ECH2O-5, Decagon Devices, USA �0.02, �0.04, �0.1, �0.2, �0.4, �0.6,
�1

12, 13, 14
CS616, Campbell, USA 4, 5, 6, 7, 8, 11, 17
CS616, Campbell, USA �0.02, �0.04, �0.1, �02, �0.4, �0.8,

�1.2, �1.6
15

ML2X, Delta-Tdevices, UK �0.02, �0.04, �0.1, �0.2, �0.4, �0.8,
�1.2, �1.6

S

�0.02, �0.04, �0.1, �0.2, �0.4, �0.6,
�1.0

M

�0.02, �0.04 P, B, F
Soil heat flux HFP01, Hukseflux, Netherland �0.06 4, 5, 6, 7, 8, 11, 17

HFT3, Campbell, USA 12, 13, 14, M, P, B, F
HFP01SC, Hukseflux, Netherland 15, S

Soil temperature 109ss-L, Campbell, USA 0, �0.02, �0.04, �0.1, �0.2, �0.4, �0.6,
�1

4, 6, 8, M
AV-10 T, Avalon, USA 5, 12, 13, 14
109, Campbell, USA 7, 11, 17
AV-10 T, Avalon, USA 0, �0.02, �0.04, �0.1, �0.2, �0.4, �0.8,

�1.2, �1.6
15

0, �0.02, �0.04 P, B, F
Infrared radiation
temperature

SI-111, Apogee, USA 4 5, 7, 11

6 4, 6, 8, 17, S, M, P, F, B
IRTC3, Avalon, USA 4 12, 13, 14, 15

Note. P, M, S, F, and B represent the Populus euphratica station, Mixed forest station, Sidaoqiao superstation, Farmland station, and Bare land station, respectively.
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before or after precipitation, or if collected at night when weak turbulence occurred (friction wind speed [u*]
less than 0.1 m/s). The nonlinear regression method was used to fill the gaps between the 30-min data. The
optical LAS can onlymeasure an integrated H over its path length. To estimate the LAS-LE, the energy balance
equation LE = Rn� G0� Hwas used. The area-averaged Rn and surface soil heat flux (G0) were obtained using
the area-weighted method of related Rn and G0 values from several plots within each LAS source area.
However, during advection conditions (H < 10 W/m2 in the daytime), the LAS-LE was obtained directly from
the linear interpolation using the relationship of LAS-LE and the area-averaged Rn under nonadvection con-
ditions (H > 10 W/m2; Liu et al., 2016). Finally, daily ET was calculated by summing the half-hourly gap-filled
ET to a 24-hr value. In addition, days with a percentage of missing 30-min data greater than 50% were con-
sidered missing days and were not used in the upscaling analysis.

The AWS data include wind speed and direction, precipitation, air temperature and humidity, pressure,
downward and upward shortwave and longwave radiation, radiometric surface temperature, soil heat flux,
soil temperature, and moisture profile. The processing and quality control steps are important, including
the following steps: (1) AWS data were processed to a 30-min average period; (2) data out of the range of phy-
sical possibility were rejected, and the linear interpolation was used to fill the gaps; and (3) soil heat flux plates
were buried at depths of 0.06 m, with three replicates located underground at each site (two plates were bur-
ied under bare soil, while another plate was buried under plants). The surface soil heat flux G0 was calculated
using the “PlateCal” approach (Liebethal et al., 2005) based on the combination of weighted vegetation frac-
tion, soil temperature, and moisture measured above the heat plates. The LST data were calculated with
downward and upward longwave radiation measured by AWSs and with surface emissivity measured by a
FT-IR spectrometer (102F; Mu et al., 2012).

The transpiration of the shelterbelts in the middle stream and of Populus euphratica in the downstream was
observed using the TDP. The raw TDP data were temperature differences with a sampling frequency of 30 s,
averaged over 10min, and processed to a 30-min average period. The sap flux density and total sap flowwere
calculated using the temperature difference between the probes and the cross-sectional area of the sap-
wood. Daily transpiration of the shelterbelt in the middle stream and of Populus euphratica in the down-
stream was calculated using total sap flow and the forest belt area. Finally, the TDP data were
postprocessed to ensure the quality of the data, including removal of data that were significantly beyond
physical meaning or instrument range and elimination of suspicious data due to probe failures (Qiao
et al., 2015).
2.2.2. Remote Sensing and Atmospheric Forcing Data
The remote sensing data used in this study are based on the Enhanced Spatial and Temporal Adaptive
Reflectance Fusion Model data fusion algorithm. For the middle stream, 6 ETM+ images from May to
September 2012 and 12 ASTER images were fused with the MODIS data corresponding to the time of the
MODIS overpass. For the downstream, 25 ETM+ images from 2013 to 2015 were fused with the MODIS data
corresponding to the time of MODIS overpass. The reflectivity data and land surface temperature in the over-
pass time of the satellite at 100-m resolution were obtained from May to September 2012 in the middle
stream and from May to September 2013–2015 in the downstream, respectively. Finally, the land surface
parameters (e.g., Rn, LST, NDVI, and FVC) were calculated using the fused data (Ma, 2015).

Land use/land cover data for the Zhangye region at 30-m resolution in the 2005 data set (Yan, 2011) were
used in the middle stream. Based on Landsat ETM data obtained in 2012 and the results of field verification,
the 2005 land cover data set was updated using the “Editor” in ArcGIS. Land use/land cover data (Xu et al.,
2015) at 30-m resolution were used in the downstream.

Based on the DTD model derived from the two-source energy balance model scheme, L. S. Song et al. (2016)
estimated the daily ET in the HRB for the years 2012–2015 at a spatial resolution of 1 km. Based on the
Shuttleworth-Wallace dual-source model, using a variety of biophysical parameters derived from microwave
and optical remote sensing observations as forcing data, Hu and Jia (2015) evaluated the daily ET (ETMonitor)
at the local scale and global scale for the years since 2009 at a spatial resolution of 1 km. The DTD and
ETMonitor products were used in the present study for validation, as discussed in section 4.3.

In this study, hourly atmospheric forcing data with a spatial resolution of 5 km, produced by the Weather
Research and Forecasting model, were collected from the data set produced by the Environmental and
Ecological Science Data Center for West China, National Natural Science Foundation of China (Pan et al.,
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2012; http://card.westgis.ac.cn/). Atmospheric forcing data with a spatial resolution of 100 m, such as atmo-
sphere pressure, air temperature, relative humidity, and precipitation, were produced using the regression
kriging method combined with ground measurements from 21 flux towers in the middle stream and 5 flux
towers in the downstream with Weather Research and Forecasting data (Ma, 2015). Finally, these data were
resampled to 30-m resolution.

3. Methodology
3.1. Upscaling Methods

According to the general classification of upscaling methods (as described in section 1), in this study, the AW,
P-T, and WATARK methods were selected from the average, simulation, and geostatistical methods, respec-
tively. Among the machine learning methods, the ANN, RF, and DBN algorithms were selected for ET upscal-
ing. Results from the selected upscaling methods were intercompared by taking the LAS measurements as
the satellite pixel reference. More details of the AW, P-T, WATARK, ANN, RF, and DBN methods to obtain ET
at the satellite pixel scale can be found in Appendix A.

3.2. Footprint Model

The footprint of flux measurement is the transfer function between the measured value and the set of for-
cings on the surface-atmosphere interface, while the source area can be interpreted as the integral of the
footprint function over a specified domain (Schmid, 1994, 2002). The flux contributing source area of the
EC and LAS measurements can be estimated using the footprint model. To estimate the flux footprint of
the EC measurements, a method proposed by Kormann and Meixner (2001), namely, a Eulerian analytic flux
footprint model, was implemented. The LAS source area can be calculated by combining the path-weighting
function of the LAS with the footprint model for point fluxes (Meijninger et al., 2002). The resolution of the
source area was 30 m for both EC and LAS measurements, and the flux contribution of the chosen total
source area was set to 90%.

4. Results and Discussion
4.1. Analysis of Surface Heterogeneity

The spatial heterogeneity of ET was evaluated using the coefficient of variation CV (see Appendix B) as the
assessment index based on the LE measured by ECs in the middle stream and downstream matrices (taking
the growing periods in 2012 and 2014 as two examples). The results of CV are shown in Figure 2.

As shown in Figure 2a, the spatial heterogeneity of ET in the middle stream matrix has a U shape. Before the
crop at full cover (before 10 July) and at the end of the crop growing period (after 3 September), the spatial
heterogeneity of ET (0.23–0.35) is large. However, in the middle of the crop growing period, the heterogene-
ity of ET (0.10–0.22) is relatively small. In addition, the spatial heterogeneity of ET decreases significantly after
rainfall and increases during the period of rotational irrigation.

According to the variation trend of spatial heterogeneity of ET over the underlying surfaces, combined with
themaize phenophase in the study area, in this study, days before the crop at full cover (before 10 July), at the
end of the crop growing period (after 3 September) and the period of rotational irrigation in themiddle of the
crop growing period, were defined as the moderately heterogeneous stages of ET. The period of nonirriga-
tion in the middle of the crop growing period was defined as the homogeneous stage of ET.

The underlying surfaces in the downstreammatrix are very fragmentary, with less precipitation and no irriga-
tion during the growing period. Using the growing period in 2014 as an example, the variation trend of spa-
tial heterogeneity of ET over time was obtained using the CV as the evaluation index (Figure 2b). The
heterogeneity of ET (0.35–0.58) is obviously greater than that in the middle stream (0.10–0.35) and with a
smaller variation range. Thus, the entire growing period was defined as the highly heterogeneous stage of ET.

4.2. Comparison of Upscaling Methods
4.2.1. Direct Validation: Comparison With LAS Measurements
Based on the footprint model, the averaged footprints in the daytime (10:30–18:00 BST) during the growing
period were calculated with four groups of LASs in 2012, two groups of LASs in 2014, and one group of LAS in
2015 (Figure 3). As shown in Figure 3, the proportion of daytime-averaged LAS source area in the
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corresponding MODIS pixels was approximately 80% in 2012 and 2014 and more than 95% in 2015, which
basically covered the corresponding MODIS pixels and were located in the central area. It is assumed that
the four groups of LAS measurements in the middle stream matrix can represent the measurements in the
3 × 1 or 2 × 1 MODIS pixel scale. The two groups of LASs in the downstream matrix in 2014 can represent
the measurements in the 2 × 2 MODIS pixel scale. One group of LAS in 2015 can represent the
measurements in the 2 × 1 MODIS pixel scale in the downstream matrix. Therefore, the LAS measurements
can be used as a reference to evaluate the upscaled results in the 3 × 1, 2 × 2, or 2 × 1 MODIS pixels.

Based on the data in the middle streammatrix during the growing period (8 June to 14 September 2012) and
the downstreammatrix during the growing period (1 June to 30 September 2014 and 2015), the upscaled ET
results of six upscaling methods were obtained and compared with the LAS measurements.

Figure 2. Variation trend of spatial heterogeneity of ET over time in (a) the middle stream matrix in 2012 and (b) down-
stream matrix in 2014. Dotted lines in (a) represent the time before the crop at full cover and the end of the crop grow-
ing period.

Figure 3. Daytime averaged LAS and EC source areas (90% flux contribution) in (a) the middle stream matrix in 2012, (b) downstream matrix in 2014, and (c) down-
stream matrix in 2015.
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The upscaling of ET results over heterogeneous underlying surfaces at the
satellite pixel scale can be significantly improved by using these upscaling
methods introducing auxiliary variables that can characterize the hetero-
geneity of the surface water and heat conditions (Liu et al., 2016). In this
study, certain auxiliary variables (i.e., Rn, VPD, LST, NDVI, and FVC) retrieved
from remote sensing data were introduced to the P-T, WATARK, ANN, RF,
and DBN methods. Their accuracy will directly affect the accuracy of the
upscaled ET results. To reduce the error of the upscaled ET results caused
by the uncertainty of the auxiliary variables, we must analyze the sensitiv-
ity of these parameters to determine the contribution of each parameter
to the upscaled ET results. Table 2 shows the results of the global sensitiv-

ity analysis of ANN, RF, and DBN (P-T and WATARK methods cannot perform global sensitivity analysis
because they are not model based) in the middle stream and downstream matrices using Extend Fourier
Amplitude Sensitivity Test (Saltelli et al., 1999). This method not only estimates the independent impact of
the input parameters of a model on the estimated results but also considers the combined effect of the inter-
action among different model parameters on the results. A larger value indicates a greater contribution rate
of the parameters to the estimated results.

From the results of the global sensitivity analysis in Table 2, generally, it can be seen that the ANN, RF, and
DBNmodels are more sensitive to Rn, LST, and NDVI than VPD and FVC. Thus, Rn, LST, and NDVI were selected
as auxiliary variables introducing to the three upscaling methods in this study. Using LAS1 in the middle
stream as an example, Figure 4a shows the relative error trend for the five upscaling methods introducing
auxiliary variables over time. Figures 4b and 4c show the trend of the retrieval error of LST and Rn at the high
resolution (30 m) over time, respectively. In Figures 4a–4c, it can be seen that the retrieval accuracy of LST and
Rn significantly affects the accuracy of the upscaled ET results. In most occasions, for example, on 22 June, 4
July, and 13 September, the retrieval errors of LST and Rn are large, and thus, the corresponding errors of the
upscaled ET results are also larger. However, on certain days, for example, on 10 June and 19 July, the relative
errors of upscaled results are large but the retrieval errors of LST and Rn are small. This is because other than
LST and Rn, other sensitive parameters and the errors derived from observation data (e.g., LAS, EC, LST, and
Rn) will also affect the relative errors of upscaled results. Besides, the algorithms of upscaling methods also
have errors, which would affect the upscaled results.

The current retrieval error of LST is approximately 2–3 K (Guillevic et al., 2014; Kabsch et al., 2008; Zhou et al.,
2015). The retrieval error of Rn is approximately 10% (De Oliveira & Moraes, 2013; Huang et al., 2016; Wang
et al., 2015). Therefore, 2 K and 15 W/m2 and 3 K and 15 W/m2, respectively, were taken as the error threshold
for remotely sensed LST and Rn in middle stream and downstreammatrices (because the underlying surfaces in
the downstream are fragmentary, the error threshold for remotely sensed LST is relatively large). In the following
comparison, data retrieval errors for LST or Rn that are greater than the threshold will be removed. Using direct
validation (i.e., taking the LAS measurements as the satellite pixel reference), a comparison of the upscaled ET
results (for the assessment index, see Appendix B) is presented in Figure 5, with statistical results in Table 3.

Figure 5 and Table 3 show that for the middle stream matrix, the AWmethod has good accuracy over homo-
geneous underlying surfaces (RMSE is 0.19 mm/d, and MAPE is 3.15%) and is slightly superior to the other five
upscaling methods introducing auxiliary variables. This finding is consistent with the conclusion of Liu et al.
(2016). Over moderately heterogeneous underlying surfaces, the WATARKmethod performs slightly better in
the middle stream matrix, with the slightly smaller error (RMSE is 0.29 mm/d, and MAPE is 4.80%). The RF
method follows, with an RMSE of 0.29 mm/d and MAPE of 5.44%, and performs slightly better among the
three machine learning methods. In addition to the DBN method, the performance of upscaling methods
introducing auxiliary variables is slightly better than the AW method (RMSE is 0.36 mm/d, and MAPE is
6.43%). Over highly heterogeneous underlying surfaces, the RF method introducing auxiliary variables per-
forms slightly better, with an RMSE of 0.55 mm/d and MAPE of 13.65%. The AW method provides an RMSE
of 0.63 mm/d and MAPE of 14.19%. The performances of other four upscaling methods introducing auxiliary
variables are relatively poor.

In the above analysis, for moderately heterogeneous underlying surfaces, the WATARKmethod performs bet-
ter in the middle stream matrix, followed by the RF method. However, for highly heterogeneous underlying

Table 2
Results of Global Sensitivity Analysis of ANN, RF, and DBN Models in Middle
Stream and Downstream Matrices

Input
parameters

The middle stream matrix The downstream matrix

ANN RF DBN ANN RF DBN

Rn 0.25 0.43 0.52 0.25 0.43 0.50
VPD 0.08 0.04 0.16 0.01 0.03 0.07
LST 0.35 0.21 0.36 0.51 0.34 0.53
NDVI 0.26 0.18 0.30 0.16 0.13 0.38
FVC 0.16 0.15 0.22 0.21 0.24 0.27
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surfaces, the RF method performs better in the downstream matrix. To analyze the cause of the differences
between the two methods in middle stream and downstream matrices, here using the middle stream matrix
as an example, the accuracy of the upscaled ET results from the WATARK and RF methods is compared for
different numbers of EC sites (Figure 6). As shown in Figure 6, with the decreasing in site number, the

Figure 5. Comparison of upscaled ET results obtained from six upscalingmethods with LASmeasurements when (a/b) MAE_LST< 2 K andMAE_Rn< 15W/m2 in the
middle stream matrix and (c) MAE_LST < 3 K and MAE_Rn < 15 W/m2 in the downstream matrix.

Figure 4. (a) Trend of the error of upscaling methods introducing auxiliary variables and trend of the retrieval error of
(b) LST and (c) Rn over time. MAE represents themean absolute error calculated by the average of auxiliary variables at sites.
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overall trends show that MAPE of the two methods is getting larger and R2 is getting lower. The MAPE (R2) of
the WATARK method is smaller (larger) than the RF method when the number of sites is relative larger; for
example, the number of sites is larger than about 7. When the number of sites is relative smaller, the
MAPE (R2) of the RF method is smaller (larger) than the WATARK method; for example, the number of sites
is smaller than about 7. For the WATARK method, the upscaled results are calculated by adding the spatial
trend of ET obtained by a regression equation consisting of auxiliary variables and the residual obtained
by area-to-area kriging. However, the magnitude of the residuals is relatively small, and the absolute value
is generally less than 0.3 mm/d (ET is generally 5 mm/d). Therefore, the accuracy of the WATARK method is
mainly affected by the accuracy of the spatial trend of ET, which depends on the number and
representativeness of sites; the RF method is not affected in this way. This difference is also the main
reason that the upscaling effect of WATARK method outperforms the RF method in the middle stream
matrix with more sites, whereas the RF method outperforms the WATARK method in the downstream
matrix with relatively few sites.

To compare the accuracy of the three machine learning methods, the EC observation data of the middle
stream and downstreammatrices were used as the training samples. In a tenfold cross validation, the training
sample was randomly partitioned into 10 subsamples, a single subsample was retained as the validation data
for testing the model, and the remaining nine subsamples were used as training data. The cross-validation
process was repeated 10 times, and the results were averaged as the validation results. Tenfold cross-
validation was performed for the ANN, RF, and DBN methods in the middle and downstream matrices
(Figure 7). Figure 7 shows that the predicted results of the ANN, RF, and DBN models in the middle and
downstream matrices are in good agreement with the measured values. In the middle stream matrix, the R
(RMSE) values were 0.86, 0.92, and 0.88 (0.72, 0.59, and 0.69 mm/d) for the ANN, RF, and DBN models,
respectively; in the downstream matrix, the R (RMSE) values were 0.81, 0.84, and 0.73 (0.91, 0.84, and
0.99 mm/d), respectively. Among the three machine learning methods, in the middle stream and
downstream matrices, the performance of RF method is best, consistent with the results in Figure 5 and

Table 3
Statistics for Comparison Between Upscaled ET Results Obtained From Six Upscaling Methods and LAS Measurements

Method

Homogeneous underlying surfaces
(N = 40; middle stream matrix)

Moderately heterogeneous underlying surfaces
(N = 42; middle stream matrix)

Highly heterogeneous underlying surfaces
(N = 43; downstream matrix)

Slope R RMSE (mm/d) MAPE (%) Slope R RMSE (mm/d) MAPE (%) Slope R RMSE (mm/d) MAPE (%)

AW 0.99 0.97 0.19 3.15 1.03 0.92 0.36 6.43 0.88 0.82 0.63 14.19
P-T 1.01 0.95 0.29 4.36 0.99 0.93 0.30 5.56 1.04 0.77 0.63 14.55
WATARK 1.01 0.96 0.27 4.22 1.02 0.97 0.29 4.80 0.91 0.58 0.88 20.37
ANN 1.02 0.93 0.32 5.27 1.05 0.93 0.34 6.25 0.97 0.75 0.66 15.19
RF 1.01 0.93 0.27 4.06 0.99 0.96 0.29 5.44 0.84 0.95 0.55 13.65
DBN 1.03 0.90 0.38 5.96 0.98 0.83 0.46 7.98 1.01 0.70 0.77 17.84

Figure 6. Comparison of the accuracy of the WATARK and RF methods as the number of sites changes.

10.1029/2018JD028422Journal of Geophysical Research: Atmospheres

LI ET AL. 12



Table 3. This finding further shows that the RFmethod is superior to the other twomachine learningmethods
in the middle stream and downstream matrices.

Relative error analysis was conducted to quantify the impacts of spatial heterogeneity, LST, and Rn on the
accuracy of the upscaled results (Figure 8). The overall trend of the relative error of the upscaled results
increases with increasing CV. When the CV is small (<0.22, i.e., homogeneous underlying surfaces), the aver-
age relative error of the upscaled results is small. The average relative error of the AWmethod is smaller than
in other upscalingmethods introducing auxiliary variables, consistent with previous analyses. With increasing
CV (0.23–0.35, i.e., moderately heterogeneous underlying surfaces), the average relative error of the upscaled
results is increased. The average relative error of the WATARKmethod is smaller than that of the other upscal-
ing methods, which is also consistent with the previous analysis. As CV continues to increase (>0.35, i.e.,
highly heterogeneous underlying surfaces), the relative error of the upscaled results reaches its peak. The
average relative error of the RF method is smaller than that of other upscaling methods, consistent with
the previous analysis. In addition, when CV > 0.35, the error of the upscaled results shows an obvious linear
correlation with CV and increases with the retrieval error of auxiliary variables. When the retrieval accuracy of
LST and Rn is low (i.e., the retrieval errors of LST and Rn are large), the relative error of the upscaled results is
high. In contrast, with the increase in retrieval accuracy (i.e., the retrieval errors of LST and Rn decrease), the
relative error of the upscaled results is correspondingly reduced. Therefore, for the upscaling methods intro-
ducing auxiliary variables, the accuracy of the upscaled results is affected not only by the spatial heterogene-
ity of the underlying surfaces but also by the retrieval accuracy of the auxiliary variables.
4.2.2. Cross Validation: Intercomparison of Six Upscaling Methods
To further validate various upscaling methods, a cross-validation method, the TCH (see Appendix C), was per-
formed for intercomparison and quantification of uncertainties of the various upscaling methods (Figure 9).
The magnitude of the relative uncertainty varies among different upscaling methods, which depends on the
heterogeneity of the underlying surfaces. For homogeneous underlying surfaces in the middle streammatrix,
the relative uncertainty of the AW method is slightly smaller. For moderately heterogeneous underlying sur-
faces in the middle stream matrix, the relative uncertainty of the WATARK method is slightly smaller than
other methods, while the relative uncertainty of the DBN method is slightly larger. For highly

Figure 7. Tenfold cross-validation results in the middle stream matrix (upper) and downstream matrix (lower).
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heterogeneous underlying surfaces in the downstream matrix, the relative uncertainty of the RF method is
slightly smaller, while the WATARK method has slightly larger relative uncertainty. The results of six
upscaling methods by the cross-validation method (TCH) are basically consistent with the direct validation
results taking the LAS observation as a reference (Table 3). On the whole, the sequence of relative
uncertainty from high to low over different underlying surfaces is homogeneous underlying surfaces,
followed by moderately heterogeneous underlying surfaces and highly heterogeneous underlying
surfaces. For most upscaling methods, if the error from direct validation is larger, the relative uncertainty
from cross validation is larger.

Figure 8. Impacts of CV, LST, and Rn on the relative error of ET from upscaling methods. Color bars represent the retrieval error values of LST (K) and Rn (W/m2).

Figure 9. Intercomparison of six upscaling methods based on the TCH cross validation method.
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4.2.3. Spatial Distribution Pattern of Upscaled ET
According to the differences in vegetation phenology, weather conditions, and soil moisture, 24 June (before
the crop is at full cover), 2 August (the crop is at full cover), and 3 September 2012 (at the end of the crop
growing period) in the middle stream matrix (3 × 3 km) and 24 July and 9 September 2014 and 16 July
and 23 August 2015 in the downstream matrix (2 × 2 km) were selected to compare the spatial distribution
patterns of upscaled results among the five upscaling methods.

As shown in Figure 10, the spatial distribution patterns of the upscaled ET from five upscaling methods in the
middle streammatrix (Figure 10a) and the downstreammatrix (Figure 10b) are similar. For the middle stream
matrix, higher values were found in the maize underlying surface, while lower values were observed in the
village underlying surface. For the time points of before the crop at full cover (24 June), crop at full cover
(2 August), and the end of the crop growing period (3 September), daily ET (the average of the five upscaling
methods) over the maize underlying surface showed a tendency to first increase and then decrease, with
values of approximately 5.7, 6.7, and 4.6 mm/d, respectively. Daily ET over the village underlying surface dur-
ing the same period was approximately 2.6, 3.3, and 1.8 mm/d, respectively. For the downstream matrix,
higher values were found in the vegetation cover underlying surface (e.g., Populus euphratica and Tamarix)
with a daily ET of approximately 4.8 mm/d, while lower values were observed in the bare land, with a daily
ET of approximately 2.4 mm/d.

Taking the WATARK method with the higher accuracy in the middle stream matrix and the RF method with
the higher accuracy in the downstream matrix as references, the Pearson correlation coefficients (see
Appendix B) and the difference in upscaled ET between WATARK or RF methods and the other four methods
were calculated (Figure 11). In the middle stream matrix, the smallest Pearson correlation coefficient and the
greatest difference of spatial distribution pattern between the upscaled ET of WATARK and other methods
were found in village and road areas. However, for the downstream matrix, the smallest Pearson correlation
coefficient and the greatest difference in spatial distribution pattern between the upscaled ET of RF and other
methods were found in areas of bare land. For the P-T method, the correlation coefficient between the α and
Ts-Ta in site 4 or Bare land station, which represent the village and bare land underlying surfaces, was smaller
than that of the other sites. This condition results in a huge difference between the upscaled result of the P-T
method and other methods in these two underlying surfaces. In addition, when training ANN, RF, and DBN
models, the number of training samples in the village or bare land underlying surfaces wasmuch smaller than
that in the vegetation cover underlying surface, which may also be a reason for the large difference in the
village and bare land underlying surfaces.
4.2.4. Upscaled ET Over Typical Underlying Surfaces
According to the land use classification in the study area, the ET of the three main underlying surfaces of
maize, orchard, and village was extracted in the middle stream. The five main underlying surfaces of
Tamarix, Populus euphratica, sparse Populus euphratica and Tamarix, bare land, and farmland were extracted
in the downstream. EC measurements were used as a reference for comparison to the upscaled ET of the dif-
ferent upscaling methods (Figure 12).

In Figure 12, the difference in the upscaled ET over the vegetation underlying surface according to the upscal-
ing methods in the middle stream matrix and downstream matrix is smaller, similar to EC measurements.
However, over the village underlying surface in the middle stream matrix and bare land underlying surface
in the downstream matrix, the upscaled ET using the P-T upscaling method was smaller than those of the
other four methods because the relationship between α and Ts-Ta in site 4 and Bare land site, which represent
the village and bare land underlying surfaces, is poorer than that of the other sites.

4.3. Acquisition of Daily Ground Truth ET Data at the Satellite Pixel Scale

According to the above analysis, the upscaled accuracy of the AW method is mainly affected by the hetero-
geneity of the underlying surfaces. Because the representativeness of EC measurements decreases with the
increase in the heterogeneity, the accuracy of the AW method decreases with the increase in the heteroge-
neity of the underlying surfaces. The upscaled accuracy of the other five upscaling methods used high-
resolution remote sensing data is affected not only by the heterogeneity of the underlying surfaces but also
by the retrieval accuracy of the auxiliary variables. In addition, for the WATARK method, the upscaled accu-
racy is also significantly influenced by the number of EC sites. Three machine learning methods use the mea-
surement data as the training sample to train the model at sites and then apply the trained model to achieve
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the upscaled ET at the satellite pixel scale. Therefore, the accuracy of the upscaled ET is also affected by the
amount of the training samples and the representativeness of the sites. In addition, the upscaled results of
the three machine learning methods are different. The accuracy of the RF method is highest because the
ANN belongs to the machine learning algorithm in the same way, the RF is an improved regression tree
algorithm, and it integrates the characteristics of bagging and random selects feature to split, and also
have advantages of antinoise and hard to fall into overfitting (Breiman, 2001; Fang et al., 2011). The DBN is
essentially a multilayer neural network learning algorithm, and its performance is better for complex

Figure 10. Comparison of spatial distribution patterns of upscaled ET from the five upscaling methods (from left to right: P-
T, WATARK, ANN, RF, and DBN methods) in (a) the middle stream and (b) downstream matrices.
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functions. It is suitable for modeling based on mass data samples. With sparse data, it is impossible to
estimate the rule of the data without bias. Thus, the accuracy of the upscaled ET may not be as good as
the results generated using simpler algorithms (Hinton et al., 2006).

Based on the analysis in section 4.2 and the study by Liu et al. (2016), the daily ground truth ET data at the
satellite pixel scale are acquired by using the AWmethod when the underlying surface is homogeneous dur-
ing the crop at full cover in the middle stream matrix. When the underlying surface is moderately

Figure 11. Comparison of the spatial correlation coefficient and difference in the upscaled ET in (a) the middle stream
matrix (from left to right: P-T, ANN, RF, and DBN methods) and (b) downstream matrix (from left to right: P-T, WATARK,
ANN, and DBN methods) during the growing period.

Figure 12. Comparison of upscaled ET over the typical underlying surfaces from upscaling methods.
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heterogeneous, namely, before the crop at full cover, at the end of the crop growing period and irrigation
time during the crop at full cover, the daily ground truth ET data at the satellite pixel scale are acquired by
the WATARK method in the middle stream matrix. When the underlying surface is highly heterogeneous,
the daily ground truth ET data at the satellite pixel scale are acquired by the RF method in the downstream
matrix. As shown in Figure 13, in the middle stream matrix (Figure 13a), the MAPE values of the daily ground
truth ET data in the LAS1, LAS2, LAS3, and LAS4 pixels were 3.5%, 3.7%, 4.8%, and 3.9%, respectively. The
accuracy of the upscaled ET was very high in the LAS1, LAS2, and LAS4 pixels and was relatively poor in
the LAS3 pixels compared with LAS observations. In the downstream matrix (Figure 13b), the MAPE values
of the daily ground truth ET data in the LAS5, LAS6, and LAS7 pixels were 11.7%, 15.1%, and 14.2%, respec-
tively, compared with LAS observations. From the above analysis, the accuracy of daily ground truth ET data
at the satellite pixel scale was good. The ground truth ET data can therefore meet the requirements for vali-
dating RS_ET products.

The errors in daily ground truth ET data at the satellite pixel scale were primarily derived from the EC and LAS
measurements and from the upscaling process (Liu et al., 2016). The errors in LAS observation mainly include
the error of LAS observation of sensible heat flux, the error associated with latent heat flux when using the
residual method and spatial representation in LAS measurements (i.e., the proportion of daytime-averaged
LAS source area in the corresponding MODIS pixels will change with the different atmospheric conditions,
such as wind speed/direction and atmospheric stability). In addition, the accuracy of the upscaling methods
itself also differs with the choice of algorithm.

The ground truth ET data at the satellite pixel scale were selected to validate the DTD and ETMonitor products
(2012, 2014, and 2015; Figure 14). As shown in Figure 14a, the daily ET obtained by DTD in the middle stream
and downstreammatrices is distributed in the vicinity of the 1:1 line, and the RMSE and MAPE are 0.94 mm/d
and 21.6%, respectively. As shown in Figure 14b, the accuracy of the ET obtained by ETMonitor in the down-
stream matrix is not as good as that in the middle stream matrix, with an RMSE and MAPE of 1.25 mm/d and
26.5%, respectively. The uncertainties of DTD and ETMonitor in the validation process are 8.91% and 8.95%,

Figure 13. Daily ground truth ET data at the satellite pixel scale in (a) the middle streammatrix in 2012 and (b) downstream
matrix in 2014 and 2015. The error bar indicates the uncertainty in the ground truth ET at the satellite pixel scale.
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respectively. The acquisition of ground truth data at the satellite pixel scale not only solves the problem of the
spatial scale mismatch between remotely sensed estimates and the in situ observations but also quantifies
uncertainties in the validation process.

5. Conclusions

Based on multisite measurements in the middle stream during the HiWATER-MUSOEXE, and the
Hydrometeorological Observation Network in the downstream of the HRB, six upscaling methods were inter-
compared and a combinedmethod was developed to acquire ground truth ET data at the satellite pixel scale.

For direct validation, over homogeneous underlying surfaces in the middle stream matrix, the results of six
upscaling methods had good accuracy, and the AW method was slightly superior to the other five upscaling
methods introducing auxiliary variables, with RMSE and MAPE values of 0.19 mm/d and 3.15%, respectively.
Over moderately heterogeneous underlying surfaces in the middle stream matrix, when the retrieval accu-
racy of the auxiliary variables was high and the number of observation sites was high, the WATARK method
performed slightly better, with RMSE and MAPE values of 0.29 mm/d and 4.80%, respectively, followed by the
RFmethod. In addition to the DBNmethod, themethods introducing auxiliary variables were slightly superior
to the AW method, and the RF methods have the relatively better performance in three machine learning
methods. Over highly heterogeneous underlying surfaces in the downstreammatrix, when the retrieval accu-
racy of LST and Rn was high, the RF method performed slightly better, with RMSE and MAPE values of
0.55 mm/d and 13.65%, respectively, and the other four upscaling methods introducing auxiliary variables
performed relatively poor. For cross validation, the relative uncertainties of the upscaling methods over
homogeneous underlying surfaces were slightly smaller than that over moderately heterogeneous underly-
ing surfaces, and the relative uncertainties of upscaling methods over highly heterogeneous underlying sur-
faces were largest. For homogeneous underlying surfaces, the relative uncertainty of the AW method was
slightly smaller than other methods, and for moderately heterogeneous underlying surfaces, the relative
uncertainty of the WATARK method was slightly smaller. The relative uncertainty of the RF method was
slightly smaller than other methods over highly heterogeneous underlying surfaces. The spatial distribution
patterns of the upscaled ET from the upscaling methods introducing auxiliary variables were similar. The dif-
ference in upscaled ET obtained by various methods was small over the vegetation underlying surfaces, while
the differences in the village and the bare land underlying surfaces were large. For the AW method, the
degree of heterogeneity of the underlying surfaces was the main affecting factor. For the other five upscaling
methods introducing auxiliary variables, in addition to the heterogeneity of the underlying surfaces, the
retrieval accuracy of LST and Rn was a predominant influencing factor. In addition, the WATARK method
requires more observation sites. Machine learning upscaling methods (i.e., ANN, RF, and DBN) must consider
the amount and representativeness of samples for training models.

Figure 14. Validation of daily RS_ET from (a) DTD and (b) ETMonitor with ground truth ET data at the satellite pixel scale.
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Thus, a combined method (using the AW and WATARK methods for homogeneous and moderately hetero-
geneous underlying surfaces, respectively, and using the RF method for highly heterogeneous underlying
surfaces) was used to acquire daily ground truth ET data at the satellite pixel scale. Taking LAS measurements
as the satellite pixel reference, the error of the ground truth ET data was evaluated. The MAPE values of the
daily ground truth ET data for the LAS1, LAS2, LAS3, and LAS4 pixels in the middle stream matrix were 3.5%,
3.7%, 4.8%, and 3.9%, respectively. The MAPE values of the daily ground truth ET data for the LAS5, LAS6, and
LAS7 in the downstream matrix were 11.7%, 15.1%, and 14.2%, respectively. The DTD and ETMonitor were
validated by the daily ground truth ET data, with RMSE and MAPE values of 0.94 mm/d and 21.6% and
1.25 mm/d and 26.5%, respectively. The uncertainties of the DTD and ETMonitor in the validation process
were 8.91% and 8.95%, respectively.

In this study, LAS measurements were taken as the “reference values” at the satellite pixel scale to evaluate
the upscaled results. However, the LE of the LAS was calculated using the energy balance residual method
or the relationship between the LAS-LE and area-averaged Rn. Therefore, in future studies, the uncertainty
(e.g., LAS observation error, the error of the energy balance residual method, and the error from the LAS spa-
tial representativeness) derived from the LASmeasurements as the reference values at the satellite pixel scale
and the influence of advection and secondary circulation will require further analysis. In addition, the
upscaled ET at the satellite pixel scale and the direct ET observations derived from the combination of LAS
and microwave scintillometer measurements should be compared in future work.

Appendix A

Appendix A shows the details of six upscalingmethods including AW, P-T, WATARK, ANN, RF, and DBN used in
this study.

A1. The Area-Weighted (AW) Method

First, the study area was divided into different plots according to the heterogeneity of the underlying surfaces
and the land use/land cover. The fraction of each plot (weighted value) was calculated after combining the
land use/land cover maps. Finally, ET at the satellite pixel scale was computed using the following equation:

ETAW ¼
XN

i¼1
Wiθi (A1)

where ETAW is the ET calculated by the AW method, N is the number of plots,Wi is the area proportion of the
ith plot relative to the satellite pixel and θi is the EC measurement in the ith plot.

The weighted values of the EC measurements in different MODIS pixels in the middle stream and down-
stream matrices are listed in Table A1.

A2. The Integrated Priestley-Taylor Equation (P-T) Method

The Priestley-Taylor equation (Priestley & Taylor, 1972) can be used to calculate the potential ET from wet sur-
faces under conditions of minimal advection as follows:

ETP ¼ α
Δ

Δþ γ
Rn � G0ð Þ (A2)

where ETP is the ET for saturated surfaces; α is the Priestley-Taylor parameter, usually taken as 1.26; Rn and G0

are the net radiation and surface soil heat flux, respectively; Δ is the slope of the saturation vapor pressure to
air temperature; and γ is the psychrometer constant.

It has been demonstrated that relationships between the Priestley-Taylor parameter α and soil moisture, land
surface temperature, and vegetation parameters can be used in the Priestley-Taylor equation. Based on such
relationships, the Priestley-Taylor equation can estimate the actual ET over unsaturated surfaces (Davies &
Allen, 1973; Fisher et al., 2008; Jiang & Islam, 2001).

In this study, first, the Priestley-Taylor parameter α for each EC site was calculated using the Priestley-Taylor
equation by combining site observations and the relationship between α and the difference of the land sur-
face temperature and air temperature (Ts-Ta) was established in each plot. Second, ET in each plot was
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estimated using the Priestley-Taylor equation by combining the Ts-Ta retrieved from remote sensing images
and atmospheric forcing data. Finally, ET at the satellite pixel scale was acquired using the equation (A3).

ETP�T ¼
XN

i¼1
WiETi þWsETs (A3)

where ETP � T is the ET in the three 3 × 1, two 2 × 2, or two 2 × 1 MODIS pixels; N is the number of plots or land
cover types in the pixel; ETi is the ET in the ith plot or land cover type calculated by the Priestley-Taylor equa-
tion; ETs is the ET measured by TDP in the shelterbelt in the middle streammatrix or in the Populus euphratica
in the downstream matrix; Wi is the fraction of the ith plot or land cover type relative to the corresponding
MODIS pixels; and Ws is the fraction of the shelterbelt or Populus euphratica relative to the corresponding
MODIS pixels.

According to Liu et al. (2016), the relationship between α and Ts-Ta was established in this study. Figure A1
shows the variation in α and Ts-Ta during the growing period (using the Daman superstation maize in 2012
and Sidaoqiao superstation Tamarix in 2014 as examples of the middle stream and downstream, respec-
tively). As shown in Figure A1, in the middle stream, there was a clear negative correlation between α and
Ts-Ta before the crop at full cover (before 29 June) and at the end of the growing period (after 30 August).
In contrast, α was approximately equal to 1.45 (blue dotted line, Ts-Ta = 0 K) during the middle of the crop
growing period. For the downstream, there was a clear negative correlation between α and Ts-Ta before 29
June and after 4 September in 2014. The α was approximately equal to 0.51 in 2014 (blue dotted line, Ts-
Ta = 8 K) during themiddle of the vegetation growing period. The LSTs retrieved from remote sensing images
were used in the following upscaling process. Therefore, the relationship between α and Ts-Ta was estimated
for the satellite passing times (11:30–12:00 BST and 12:00–12:30 BST). The relationship between α and Ts-Ta
was established using a linear equation in each plot or land cover type before the crop at full cover and at
the end of the growing period (Table A2 and Table A3). Good correlation coefficients were achieved,
in general.

A3. The Weighted Area-to-Area Regression Kriging (WATARK) Method

Based on the correlation with ET and the availability of the remote sensing data for implementation of the
WATARK method, we selected Rn, LST, and NDVI as auxiliary variables (the same as these machine learning

Table A1
Weighted Value of Each EC Measurement in Different MODIS Pixels in Middle Stream and Downstream Matrices

Related EC

3 × 1 MODIS
pixels (LAS1)

3 × 1 MODIS
pixels (LAS2)

3 × 1 MODIS
pixels (LAS3)

2 × 1 MODIS
pixels (LAS4)

2 × 2 MODIS
pixels (LAS5)

2 × 2 MODIS
pixels (LAS6)

2 × 1 MODIS
pixels (LAS7)

Area
weighted%

Area
weighted%

Area
weighted%

Area
weighted%

Area
weighted%

Area
weighted%

Area
weighted%

EC4 (village) 15 15 13 7
EC5 (maize) 20 - -
EC6 (maize) 13 17 -
EC7 (maize) - 18 12
EC8 (maize) - 9 36
EC11 (maize) 19 - -
EC12 (maize) - 14 10 10
EC13 (maize) - - 9 21
EC14 (maize) 22 20 -
EC15 (maize) - - 11 50
EC17 (orchard) - - - 6
TDP-shelterbelt 11 7 9 6
EC-P (sparse Populus euphratica) - 35 -
EC-M (sparse Populus euphratica and tamarix) 37 - 32
EC-S (Tamarix) 29 31 32
EC-F (melon) 9 7 9
EC-B (bare land) 14 13 14
TDP-Populus euphratica 11 14 13

Note. P, M, S, F, and B represent the Populus euphratica station, Mixed forest station, Sidaoqiao superstation, Farmland station, and Bare land station, respectively.
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methods in section 4.2.1). The processing steps were as follows: First, the selected auxiliary variables were
extracted with footprint models, that is, the weighted average. The ET observed by EC was used as the
dependent variable, and the auxiliary variables extracted by the footprint model were used as
independent variables to establish a regression model for the ET spatial trend and residual as

ETi ¼ β0 þ β1·Rni þ β2· LSTi þ β3· NDVI i þ ri (A4)

where ETi is the ET of the ith EC; Rni , LSTi , and NDVI i are remotely sensed
auxiliary variables extracted by the ith EC footprint; β0 , …, β3 are regres-
sion coefficients; and ri is the residual of the ith EC.

Second, the regression coefficients were obtained by the stepwise
regression method, and then the spatial trend and residual of the ET at
the footprint scale were achieved by the regression model. Third, the
residual at the satellite pixel was calculated using the weighted
area-to-area kriging equations. Finally, the ET was estimated by adding
the spatial trend (regression estimations) to the weighted area-to-area
kriging results at the satellite pixels corresponding to the LAS.

A4. Artificial Neural Network (ANN) Method

Among numerous ANN algorithms, themultilayer networks using the error
back propagation algorithm (Haykin, 1998) are themost popular. Sufficient
training data are input into the input layer, which consists of auxiliary
variables (i.e., Rn, VPD, LST, NDVI, and FVC), to train the network. The

Figure A1. Variation in the Priestley-Taylor parameter α and the difference between the surface and air temperature (Ts-Ta)
in (a) the middle stream and (b) downstream in 2014.The black dotted lines indicate 29 June and 30 August at EC15 in
2012 (29 June and 4 September at Sidaoqiao in 2014), the blue dotted line indicates α = 1.45 at EC15 (0.51 at Sidaoqiao),
and the red dotted line indicates Ts-Ta = 0 K at EC15 (8 K at Sidaoqiao).

Table A2
Linear Relationship (y = ax + b) Between the Priestley-Taylor Parameter α
(y Axis) and the Difference of the Land Surface and Air Temperatures, Ts-Ta
(x Axis) in the Middle Stream

Site

8 to 28 June 2012 31 August to 14 September 2012

a b R n a b R n

EC4 �0.07 1.86 0.56 35 �0.10 1.56 0.58 30
EC5 �0.03 1.46 0.82 39 �0.09 1.59 0.72 30
EC6 �0.02 1.39 0.92 42 �0.09 1.57 0.73 30
EC7 �0.02 1.09 0.69 42 �0.03 1.34 0.71 30
EC8 �0.02 1.31 0.60 41 �0.09 1.49 0.77 30
EC11 �0.02 1.40 0.91 42 �0.12 1.54 0.75 30
EC12 �0.02 1.38 0.69 41 �0.08 1.55 0.73 30
EC13 �0.01 1.45 0.57 40 �0.07 1.76 0.77 30
EC14 �0.03 1.37 0.84 41 �0.08 1.50 0.78 30
EC15 �0.02 1.44 0.74 42 �0.06 1.54 0.71 28
EC17 �0.06 1.54 0.82 42 �0.09 1.64 0.72 30
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weights, which represent the linkages between the variables and ET, are
obtained in the hidden layer, and the final processing results are output
at the output layer. There are two training phases for an ANN. In the first
phase (also called the forward pass), the input variables are propagated
from the input to the output layer. The differences between the predicted
and measured ET are calculated by propagating selected variables from
the input layer to the output layer. In the second phase (also called the
reverse pass), the errors are propagated backward from the output layer
to the hidden layer to adjust the weights. Back propagation uses a steepest
descent method on the error surfaces to adjust the weights to minimize
the difference between the predicted and expected output. To prevent
an ANN model from being trapped in a local minimum error during
training, a momentum term (Rumelhart et al., 1986) to the weight change
was added in obtaining ET of the ANN.

A5. Random Forest (RF) Method

The RF regression algorithm is an ensemble-learning algorithm that combines a large set of regression trees,
which was used in this study. A regression tree represents a set of restrictions or conditions that are hierarchi-
cally organized and successively applied from a root to a terminal node or leaf in a tree (Breiman et al., 1984;
Quinlan, 1993). At each node in the tree, a random subset of predictor variables is used to identify the most
efficient split, which is defined by identifying the predictor variable and the split point that results in the lar-
gest reduction in the residual sum of squares between the sample observations and the node mean. All trees
are grown to the maximum extent, as controlled by the node size set by the user. The result is an ensemble of
low-bias, high-variance regression trees, where the final predictions are derived by averaging the predictions
of the individual trees (Breiman, 2001). In this study, three parameters were determined in RF: the parameter
ntree (i.e., the number of regression trees grown based on a bootstrap sample of the observations) was set to
1,000; for the parameter mtry (i.e., the number of different predictors tested at each node), the default value
of the square root of the total number of the variables was used; and the parameter nodesize (i.e., the minimal
size of the terminal nodes of the trees) was set to the default value (one).

A6. Deep Belief Network (DBN) Method

First, the DBN is decomposed into a series of RBMs composed of two adjacent layers. As a special type of
Markov random field, RBM is a bipartite undirected graphical model that consists of a layer of visible units
(random variables) v∈{0, 1}V (v and V are the visible units and visible layer, respectively) and a layer of binary
hidden units (random variables) h∈{0, 1}H (h and H are the hidden units and hidden layer, respectively). The
visible units represent the observed data, and the hidden units learn to capture the higher-order features
based on the input. The visible and hidden layers are connected by a symmetrical weight matrix W∈MV × H

(W andM are the weight and matrix, respectively), but there are no connections within a layer. Second, train-
ing parameters are used layer by layer to initialize the DBN. Feature activations can be implemented through
RBMs and hence adopted to effectively learn within the DBN architecture. The hidden layer will be visible to
the next RBM if the previous RBM is trained. Finally, the back-propagation algorithm is used to better tune
and optimize the entire DBN using the gradient descent method (X. D. Song et al., 2016).

Appendix B

Appendix B shows the assessment methods used in this study. The coefficient of variation (CV) is defined as
the ratio of the standard deviation and the average. The CV was calculated as

CV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1 xi � xð Þ2

q

x
(B1)

where xi, x , and n are the ith sample value, sample average value, and number of samples, respectively. A
greater CV is clearly associated with greater spatial heterogeneity of the physical quantity. In section 4.1,
CV is used to evaluate the spatialheterogeneity of ET before comparison.

Table A3
Linear Relationship (y = ax + b) Between the Priestley-Taylor Parameter α
(y Axis) and the Difference of the Land Surface and Air Temperatures, Ts-Ta (x
Axis) in the Downstream

Site

1 to 28 June 2014 5 to 30 September 2014

a b R n a b R n

Populus
euphratica

�0.02 0.63 0.77 46 �0.03 0.55 0.65 45

Mixed forest �0.03 0.67 0.80 36 �0.05 0.57 0.67 44
Sidaoqiao �0.05 0.85 0.82 32 �0.05 0.63 0.66 33
Farmland �0.05 0.67 0.75 30 �0.03 0.40 0.66 48
Bare land �0.01 0.46 0.73 44 �0.02 0.37 0.64 45
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Taking LAS measurements as the satellite pixel reference, the indices of mean absolute percentage error
(MAPE), relative error (RE), root-mean-square error (RMSE), and Pearson correlation coefficient (R) were
selected to assess the accuracy and spatial distribution patterns of the various upscaled ET results, and the
respective equations are as follows:

MAPE ¼ 100
n

Xn

i¼1

Pi � Oij j
O

(B2)

RE ¼ Pi � Oi

O
(B3)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
Pi � Oið Þ2=n

q
(B4)

R ¼
Xn

i¼1
Pi � P
� �

Oi � O
� �

=
Xn

i¼1
Pi � P
� �2 Xn

i¼1
Oi � O
� �2h i1=2

(B5)

where Pi is the estimated value, Oi is the measured value, P is the mean estimated value, O is the mean mea-
sured value, and n is the number of samples. In sections 4.2.1 and 4.3, P indicates the upscaling values, and O
indicates the LAS measurements. In section 4.2.3, Pi indicates the ith pixel value of the compared upscaled ET,
and Oi indicates the ith pixel value of the referenced upscaled ET. P indicates the mean value of the relative
pixel from the compared upscaled ET, and O indicates the mean value of the relative pixel from the refer-
enced upscaled ET.

Appendix C

The TCH can be used to estimate the relative uncertainties among various data sets under the condition of no
measurements when at least three different series of data (e.g., the upscaled ET derived from several upscal-
ing methods in this study) are available. In section 4.2.2, we used the TCH method for cross validation of six
upscaling methods without requiring that the data sources be entirely independent. The theory of the TCH is
described below.

The observational errors in the TCHmethod are commonly assumed to be normally distributed. Suppose that
N is the number of different time series, denoted by {Xi}i = 1, 2, …, N, and ? corresponds to different time series.
Thus, each time series can be expressed as

Xi ¼ Xt þ εi; ∀i ¼ 1; 2;…;N (C1)

where Xt is the true signal and εi is the error of the ith time series. The symbol ∀ is called the universal quan-
tifier. Since no true estimate of Xt is available, any single time series is chosen arbitrarily as the reference. The
series of differences matrix can be obtained by calculating the difference between each time series and the
reference. The corresponding covariance matrix S of the series of difference matrices can thus be obtained.
Notably, the valuation of uncertainties is not related to the selection of reference series.

The unknown N × Ncovariance matrix of the individual noise R is introduced, and R is related to S as follows:

S ¼ J·R·JT (C2)

where J is described as follows:

JN�1;N ¼

1 0

0 1

⋮ ⋮

… 0 �1

… 0 �1

⋮ ⋮ ⋮

0 0 0 … �1

2
66664

3
77775

The equation (C2) cannot be solved because the number of equations is less than the number of unknowns
(when N is greater than 3). Therefore, the remaining free parameters require a reasonable method to obtain
the unique solution. Galindo and Palacio (1999) proposed a constraint function to meet |R| > 0 as follows:
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H r1N;…;rNNð Þ ¼ � Rj j
Sj j·K < 0 (C3)

where r1N, …,rNN are the elements of corresponding R and K ¼ ffiffiffiffiffi
Sj jN�1

p
is introduced to better obtain a numer-

ical solution.

This constraint function constrains the free parameters within the solution domain but is not sufficient to
determine a unique solution for the free parameters. The following objective function is also used to give
the optimal pick criterion to obtain the unique parameter solution as follows:

F r1N ;…;rNNð Þ ¼ 1

K2 ·
XN

i<j
r2ij (C4)

The R is calculated using the objective function under the constraint condition by combining with the
equation (C2). The uncertainty of the time series {Xi}i = 1, 2, …, N, called {σi}i = 1, 2, …, N, can be obtained by
calculating the square root of the diagonal values in R (i.e., {rii}i = 1, 2, …, N). The relative uncertainty is the ratio
of σi to the mean of Xi.
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